PROBLEM SHEET ON CURVES IN EUCLIDEAN SPACE AND COSSERAT FRAMES

Problem 1. Consider the parameterized curve

$$
\alpha(t)=\left(\frac{1}{3}(\sqrt{1+t})^{3}, \frac{1}{3}(\sqrt{1-t})^{3}, \frac{1}{\sqrt{2}} t\right)
$$

which is defined for $t \in[-1,1]$.

- Recall from Problem sheet 4, Problem 1, the tangent, normal and binormal vector of α;
- Write the Frenet-Serret equations;
- Find the twist vector of α.

Problem 2. Consider the parameterized curve

$$
\beta(t)=(a \cosh (t), a \sinh (t), b t) .
$$

- Check if β is parameterized by arclength;
- Find the normal vector and the curvature of β for every $t \in \mathbb{R}$;
- Find the center of the osculating circle for every $t \in \mathbb{R}$;
- Find the binormal vector and the torsion of β for every $t \in \mathbb{R}$;

Draw some pictures of the curve.
Problem 3. Let $b>0$ and consider the three-dimensional body defined by:

$$
\mathcal{B}=\left\{(x, y, z): 0 \leq x \leq b, e^{-x} \leq y \leq e^{x}, 0 \leq z \leq 2 e^{x}\right\},
$$

and assume the sets $\{x=a\}$ (for $a \in \mathbb{R}$ constant) are its cross sections.

- Draw a picture of the rod and of its cross sections;
- Find the line of centroids of the rod.

Problem 4. Consider the curve $r(t)=\left(t, 0, e^{t}\right)$ and the triple

$$
d_{1}(t)=\left(\cos \left(e^{t}\right), \sin \left(e^{t}\right), 0\right) \quad d_{2}(t)=\left(-\sin \left(e^{t}\right), \cos \left(e^{t}\right), 0\right) \quad d_{3}=(0,0,1)
$$

- Check that $\left(d_{1}, d_{2}, d_{3}\right)$ is an orthonormal triple;
- Find coefficients v_{1}, v_{2}, v_{3} such that $r^{\prime}(t)=v_{1} d_{1}+v_{2} d_{2}+v_{3} d_{3}$;
- Find the vector u such that, for $k=1,2,3, d_{k}^{\prime}(t)=u \times d_{k}$.
- Check that the Cosserat frame preserves orientation, i.e. $r^{\prime}(t) \cdot d_{3}>0$.

