PROBLEM SHEET ON DIFFERENTIAL GEOMETRY OF CURVES IN EUCLIDEAN SPACE

Problem 1. Consider the parameterized curve

$$\alpha(t) = (\frac{1}{3}(\sqrt{1+t})^3, \frac{1}{3}(\sqrt{1-t})^3, \frac{1}{\sqrt{2}}t)$$

which is defined for $t \in [-1, 1]$.

- Check if α is parameterized by arclength;
- Find the normal vector and the curvature of α for every $t \in \mathbb{R}$;
- Find the binormal vector and the torsion of α for every $t \in \mathbb{R}$.

Problem 2. Consider the parameterized curve

$$\beta(t) = (a\cosh(t), a\sinh(t), bt).$$

(Recall that $\cosh(t) = (e^t + e^{-t})/2$ is the hyperbolic cosine and $\sinh(t) = (e^t - e^{-t})/2$ is the hyperbolic sine.)

- Check if β is parameterized by arclength;
- Find the normal vector and the curvature of β for every $t \in \mathbb{R}$;
- Find the center of the osculating circle for every $t \in \mathbb{R}$;
- Find the binormal vector and the torsion of β for every $t \in \mathbb{R}$;

Draw some pictures of the curve.

Problem 3. Consider the parameterized curve

$$\gamma(t) = (a\cos(t), a\sin(t), be^t).$$

(You have already seen this curve in Problem 4, Problem sheet 1.)

- Compute the tangent vector for every $t \in \mathbb{R}$.
- Compute the normal vector and the curvature of γ for every $t \in \mathbb{R}$. What is the limit of the curvature, when $t \to \infty$ and $t \to -\infty$?

Problem 4. Prove that, given a plane regular parameterized curve $\alpha : \mathbb{R} \to \mathbb{R}^2$, the curvature of α at t is the derivative of the angle formed by the tangent line to α at t with the horizontal line y = 0. Hint: Write the unit tangent vector at $\alpha(t)$ as $(\cos \theta(t), \sin \theta(t))$, where $\theta(t)$ is the angle, and differentiate.

Is this still true if one takes any line in \mathbb{R}^2 , instead of the line y = 0?

Problem 5 (Extra challenge). Find all planar curves in \mathbb{R}^2 parameterized by arclength, having constant curvature (i.e. for which the curvature is $k(t) = k_0$, where k_0 is a constant).

Hint: Let $(\mathbf{t}_1(t), \mathbf{t}_2(t))$ be the tangent vector and $(\mathbf{n}_1(t), \mathbf{n}_2(t))$ the normal vector. Write the Frenet-Serret equations and remember from Problem Sheet 1 how to solve a linear system of ODEs, with the method of eigenvalues. You will need to impose a good initial condition: $(\mathbf{t}_1(0), \mathbf{t}_2(0)) = (x_0, y_0)$ with $x_0^2 + y_0^2 = 1$, and you need to distinguish two cases for $(\mathbf{n}_1(0), \mathbf{n}_2(0))$. Finally, if you know the tangent vector to a curve α parameterized by arclength, then you can find the curve α by integration. Interpret the result with some pictures.

Date: October 2, 2015.