PROBLEM SHEET ON DIFFERENTIAL GEOMETRY OF CURVES IN EUCLIDEAN SPACE

Problem 1. Consider the parameterized curve

$$
\alpha(t)=\left(\frac{1}{3}(\sqrt{1+t})^{3}, \frac{1}{3}(\sqrt{1-t})^{3}, \frac{1}{\sqrt{2}} t\right)
$$

which is defined for $t \in[-1,1]$.

- Check if α is parameterized by arclength;
- Find the normal vector and the curvature of α for every $t \in \mathbb{R}$;
- Find the binormal vector and the torsion of α for every $t \in \mathbb{R}$.

Problem 2. Consider the parameterized curve

$$
\beta(t)=(a \cosh (t), a \sinh (t), b t)
$$

(Recall that $\cosh (t)=\left(e^{t}+e^{-t}\right) / 2$ is the hyperbolic cosine and $\sinh (t)=\left(e^{t}-e^{-t}\right) / 2$ is the hyperbolic sine.)

- Check if β is parameterized by arclength;
- Find the normal vector and the curvature of β for every $t \in \mathbb{R}$;
- Find the center of the osculating circle for every $t \in \mathbb{R}$;
- Find the binormal vector and the torsion of β for every $t \in \mathbb{R}$;

Draw some pictures of the curve.
Problem 3. Consider the parameterized curve

$$
\gamma(t)=\left(a \cos (t), a \sin (t), b e^{t}\right)
$$

(You have already seen this curve in Problem 4, Problem sheet 1.)

- Compute the tangent vector for every $t \in \mathbb{R}$.
- Compute the normal vector and the curvature of γ for every $t \in \mathbb{R}$. What is the limit of the curvature, when $t \rightarrow \infty$ and $t \rightarrow-\infty$?

Problem 4. Prove that, given a plane regular parameterized curve $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{2}$, the curvature of α at t is the derivative of the angle formed by the tangent line to α at t with the horizontal line $y=0$. Hint: Write the unit tangent vector at $\alpha(t)$ as $(\cos \theta(t), \sin \theta(t))$, where $\theta(t)$ is the angle, and differentiate.

Is this still true if one takes any line in \mathbb{R}^{2}, instead of the line $y=0$?
Problem 5 (Extra challenge). Find all planar curves in \mathbb{R}^{2} parameterized by arclength, having constant curvature (i.e. for which the curvature is $k(t)=k_{0}$, where k_{0} is a constant).
Hint: Let $\left(\mathbf{t}_{1}(t), \mathbf{t}_{2}(t)\right)$ be the tangent vector and $\left(\mathbf{n}_{1}(t), \mathbf{n}_{2}(t)\right)$ the normal vector. Write the Frenet-Serret equations and remember from Problem Sheet 1 how to solve a linear system of ODEs, with the method of eigenvalues. You will need to impose a good initial condition: $\left(\mathbf{t}_{1}(0), \mathbf{t}_{2}(0)\right)=\left(x_{0}, y_{0}\right)$ with $x_{0}^{2}+y_{0}^{2}=1$, and you need to distinguish two cases for $\left(\mathbf{n}_{1}(0), \mathbf{n}_{2}(0)\right)$. Finally, if you know the tangent vector to a curve α parameterized by arclength, then you can find the curve α by integration. Interpret the result with some pictures.

