HOMEWORK ON TENSOR ALGEBRA

In the following problems $\mathcal{B} := (\boldsymbol{e}_1, \boldsymbol{e}_1, \boldsymbol{e}_3)$ will always denote a basis of \mathcal{V} .

Problem 1. Let $a, b \in \mathcal{V}$. What are det $(a \otimes b)$ and $(a \otimes b)^{\top}$?

Problem 2. Let **A** and **B** two tensors. Prove that $\det AB = \det A \det B$.

Problem 3. Let C be an invertible tensor. Prove that det $(C^{-1}) = (\det C)^{-1}$.

Problem 4. Let $\mathbf{A} = \sum_{i,j=1}^{3} A_{ij} \mathbf{e}_i \otimes \mathbf{e}_j$ and $\mathbf{A}^{\top} = \sum_{i,j=1}^{3} A_{ij}^{\top} \mathbf{e}_i \otimes \mathbf{e}_j$. Prove that (1) $A_{ij}^{\top} = A_{ji}$ for each i, j = 1, 2, 3; (2) det $\mathbf{A}^{\top} = \det \mathbf{A}$.

Problem 5. Let **L** be a tensor such that

$$\begin{cases} \mathbf{L} \boldsymbol{e}_1 = 2\boldsymbol{e}_1 + \boldsymbol{e}_2 \\ \mathbf{L} \boldsymbol{e}_2 = \boldsymbol{e}_2 + 3\boldsymbol{e}_3 \\ \mathbf{L} \boldsymbol{e}_3 = \boldsymbol{e}_1 + 3\boldsymbol{e}_2 + 3\boldsymbol{e}_3 \end{cases}$$

and let $v = -e_1 + 2e_2 + e_3$.

- (1) Write the matrices L, L^{\top} and L^{-1} that represent, respectively, $\mathbf{L}, \mathbf{L}^{\top}$ and \mathbf{L}^{-1} in the basis \mathcal{B} .
- (2) Write (in the basis \mathcal{B}) $\mathbf{L}^{\top} \boldsymbol{v}$, $\mathbf{L}^{-1} \boldsymbol{v}$ and $\mathbf{L}^{\star} \boldsymbol{v}$.

Let $\mathcal{B}' = (\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)$ with

$$egin{aligned} &m{b}_1 = rac{\sqrt{3}}{3}m{e}_1 + rac{\sqrt{3}}{3}m{e}_2 + rac{\sqrt{3}}{3}m{e}_3, \ &m{b}_2 = -rac{\sqrt{6}}{3}m{e}_1 + rac{\sqrt{6}}{6}m{e}_2 + rac{\sqrt{6}}{6}m{e}_3, \ &m{b}_3 = -rac{\sqrt{2}}{2}m{e}_2 + rac{\sqrt{2}}{2}m{e}_3. \end{aligned}$$

- (3) Check that \mathcal{B}' is a basis of \mathcal{V} [i.e.: b_1, b_2, b_3 are linearly independent, pairwise orthogonal and of length 1].
- (4) Write the matrix L' that represents the tensor **L** in the basis \mathcal{B}' .
- (5) Check det $\mathbf{L} = \det L = \det L'$. [Hint: you can compute det \mathbf{L} by using $\mathbf{e}_1 \times \mathbf{e}_2 \cdot \mathbf{e}_3$ and the very definition of determinant.]

Problem 6. Let the angles α, β, γ and the lines x, y, z be as in the following pictures:

Let the tensor $\mathbf{R}_{x\alpha}$ be the rotation around the line x by the angle α . Let the tensor $\mathbf{R}_{y\beta}$ be the rotation around the line y by the angle β . Let the tensor $\mathbf{R}_{z\gamma}$ be the rotation around the line z by the angle γ .

- (1) What are the images (expressed in the basis \mathcal{B}) of e_1, e_2, e_3 under $\mathbf{R}_{x\alpha}, \mathbf{R}_{y\beta}$ and $\mathbf{R}_{z\gamma}$ respectively?
- (2) Find the eigenvalues and the associated eigenspaces of $\mathbf{R}_{x\alpha}$, $\mathbf{R}_{y\beta}$ and $\mathbf{R}_{z\gamma}$.
- (3) What happens if $\alpha = 0$ or $\beta = 0$ or $\gamma = 0$?
- (4) Write the matrices that represent $\mathbf{R}_{x\alpha}$, $\mathbf{R}_{y\beta}$ and $\mathbf{R}_{z\gamma}$ in \mathcal{B} .

Note: a generic rotation in $L(\mathcal{V})$ is always a tensor of the form $\mathbf{R}_{x\alpha}\mathbf{R}_{y\beta}\mathbf{R}_{z\gamma}$, *i.e.* it is always a composition of a rotation around x, a rotation around y and a rotation around z.

(5) What are $\mathbf{R}_{x\frac{\pi}{2}}\mathbf{R}_{y\frac{\pi}{2}}\mathbf{R}_{z\frac{\pi}{2}}\mathbf{e}_1$, $\mathbf{R}_{x\frac{\pi}{2}}\mathbf{R}_{y\frac{\pi}{2}}\mathbf{R}_{z\frac{\pi}{2}}\mathbf{e}_2$ and $\mathbf{R}_{x\frac{\pi}{2}}\mathbf{R}_{y\frac{\pi}{2}}\mathbf{R}_{z\frac{\pi}{2}}\mathbf{e}_3$?

Problem 7. Let $u = e_2 - e_3$ and $v = e_1 - e_3$, and let span $\{u, v\}$ be the subspace of \mathcal{V} generated by u and v (i.e. the plane where both u and v lie). Let the tensor \mathbf{R}_{uv} be the reflection through span $\{u, v\}$.

- (1) What are $\mathbf{R}_{uv} u$ and $\mathbf{R}_{uv} v$?
- (2) What is the image of span{u, v} under \mathbf{R}_{uv} ? What happens to any vector $w \in \text{span}{u, v}$ when \mathbf{R}_{uv} is applied to it?
- (3) What is $\mathbf{R}_{uv}(u \times v)$?
- (4) Write the matrix that represents \mathbf{R}_{uv} in the basis \mathcal{B} .

Problem 8. Consider the shear tensor $\mathbf{F} = \mathbf{I} + 3\mathbf{e}_1 \otimes \mathbf{e}_3 + 2\mathbf{e}_2 \otimes \mathbf{e}_3$.

- (1) Write the matrix that represents \mathbf{F}^{\star} in the basis \mathcal{B} .
- (2) Which is the area dilation factor of **F** for surfaces parallel to span $\{e_1, e_3\}$?
- (3) Which is the area dilation factor of **F** for surfaces parallel to span $\{e_2, e_3\}$?