HOMEWORK ON TENSOR ALGEBRA

In the following problems $\mathcal{B}:=\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{1}, \boldsymbol{e}_{3}\right)$ will always denote a basis of \mathcal{V}.

Problem 1. Let $\boldsymbol{a}, \boldsymbol{b} \in \mathcal{V}$. What are $\operatorname{det}(\boldsymbol{a} \otimes \boldsymbol{b})$ and $(\boldsymbol{a} \otimes \boldsymbol{b})^{\top}$?

Problem 2. Let \mathbf{A} and \mathbf{B} two tensors. Prove that $\operatorname{det} \mathbf{A B}=\operatorname{det} \mathbf{A} \operatorname{det} \mathbf{B}$.

Problem 3. Let \mathbf{C} be an invertible tensor. Prove that $\operatorname{det}\left(\mathbf{C}^{-1}\right)=(\operatorname{det} \mathbf{C})^{-1}$.

Problem 4. Let $\mathbf{A}=\sum_{i, j=1}^{3} A_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}$ and $\mathbf{A}^{\top}=\sum_{i, j=1}^{3} A_{i j}^{\top} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}$. Prove that
(1) $A_{i j}^{\top}=A_{j i}$ for each $i, j=1,2,3$;
(2) $\operatorname{det} \mathbf{A}^{\top}=\operatorname{det} \mathbf{A}$.

Problem 5. Let \mathbf{L} be a tensor such that

$$
\left\{\begin{aligned}
\mathbf{L} e_{1} & =2 e_{1}+e_{2} \\
\mathbf{L} e_{2} & =e_{2}+3 e_{3} \\
\mathbf{L} e_{3} & =e_{1}+3 e_{2}+3 e_{3}
\end{aligned}\right.
$$

and let $\boldsymbol{v}=-\boldsymbol{e}_{1}+2 \boldsymbol{e}_{2}+\boldsymbol{e}_{3}$.
(1) Write the matrices L, L^{\top} and L^{-1} that represent, respectively, $\mathbf{L}, \mathbf{L}^{\top}$ and \mathbf{L}^{-1} in the basis \mathcal{B}.
(2) Write (in the basis $\mathcal{B}) \mathbf{L}^{\top} \boldsymbol{v}, \mathbf{L}^{-1} \boldsymbol{v}$ and $\mathbf{L}^{\star} \boldsymbol{v}$.

Let $\mathcal{B}^{\prime}=\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}\right)$ with

$$
\begin{aligned}
& \boldsymbol{b}_{1}=\frac{\sqrt{3}}{3} e_{1}+\frac{\sqrt{3}}{3} e_{2}+\frac{\sqrt{3}}{3} e_{3} \\
& \boldsymbol{b}_{2}=-\frac{\sqrt{6}}{3} e_{1}+\frac{\sqrt{6}}{6} e_{2}+\frac{\sqrt{6}}{6} e_{3} \\
& \boldsymbol{b}_{3}=-\frac{\sqrt{2}}{2} e_{2}+\frac{\sqrt{2}}{2} e_{3}
\end{aligned}
$$

(3) Check that \mathcal{B}^{\prime} is a basis of \mathcal{V} [i.e.: $\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \boldsymbol{b}_{3}$ are linearly independent, pairwise orthogonal and of length 1].
(4) Write the matrix L^{\prime} that represents the tensor \mathbf{L} in the basis \mathcal{B}^{\prime}.
(5) Check $\operatorname{det} \mathbf{L}=\operatorname{det} L=\operatorname{det} L^{\prime}$. [Hint: you can compute $\operatorname{det} \mathbf{L}$ by using $\boldsymbol{e}_{1} \times \boldsymbol{e}_{2} \cdot \boldsymbol{e}_{3}$ and the very definition of determinant.]

Problem 6. Let the angles α, β, γ and the lines x, y, z be as in the following pictures:

Let the tensor $\mathbf{R}_{x \alpha}$ be the rotation around the line x by the angle α.
Let the tensor $\mathbf{R}_{y \beta}$ be the rotation around the line y by the angle β.
Let the tensor $\mathbf{R}_{z \gamma}$ be the rotation around the line z by the angle γ.
(1) What are the images (expressed in the basis \mathcal{B}) of $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$ under $\mathbf{R}_{x \alpha}, \mathbf{R}_{y \beta}$ and $\mathbf{R}_{z \gamma}$ respectively?
(2) Find the eigenvalues and the associated eigenspaces of $\mathbf{R}_{x \alpha}, \mathbf{R}_{y \beta}$ and $\mathbf{R}_{z \gamma}$.
(3) What happens if $\alpha=0$ or $\beta=0$ or $\gamma=0$?
(4) Write the matrices that represent $\mathbf{R}_{x \alpha}, \mathbf{R}_{y \beta}$ and $\mathbf{R}_{z \gamma}$ in \mathcal{B}.

Note: a generic rotation in $L(\mathcal{V})$ is always a tensor of the form $\mathbf{R}_{x \alpha} \mathbf{R}_{y \beta} \mathbf{R}_{z \gamma}$, i.e. it is always a composition of a rotation around x, a rotation around y and a rotation around z.
(5) What are $\mathbf{R}_{x \frac{\pi}{2}} \mathbf{R}_{y \frac{\pi}{2}} \mathbf{R}_{z \frac{\pi}{2}} \boldsymbol{e}_{1}, \mathbf{R}_{x \frac{\pi}{2}} \mathbf{R}_{y \frac{\pi}{2}} \mathbf{R}_{z \frac{\pi}{2}} \boldsymbol{e}_{2}$ and $\mathbf{R}_{x \frac{\pi}{2}} \mathbf{R}_{y \frac{\pi}{2}} \mathbf{R}_{z \frac{\pi}{2}} \boldsymbol{e}_{3}$?

Problem 7. Let $\boldsymbol{u}=\boldsymbol{e}_{2}-\boldsymbol{e}_{3}$ and $\boldsymbol{v}=\boldsymbol{e}_{1}-\boldsymbol{e}_{3}$, and let $\operatorname{span}\{\boldsymbol{u}, \boldsymbol{v}\}$ be the subspace of \mathcal{V} generated by \boldsymbol{u} and \boldsymbol{v} (i.e. the plane where both \boldsymbol{u} and \boldsymbol{v} lie). Let the tensor $\mathbf{R}_{\boldsymbol{u v}}$ be the reflection through $\operatorname{span}\{\boldsymbol{u}, \boldsymbol{v}\}$.
(1) What are $\mathbf{R}_{\boldsymbol{u v}} \boldsymbol{u}$ and $\mathbf{R}_{\boldsymbol{u v}} \boldsymbol{v}$?
(2) What is the image of $\operatorname{span}\{\boldsymbol{u}, \boldsymbol{v}\}$ under $\mathbf{R}_{\boldsymbol{u} \boldsymbol{v}}$? What happens to any vector $\boldsymbol{w} \in \operatorname{span}\{\boldsymbol{u}, \boldsymbol{v}\}$ when $\mathbf{R}_{\boldsymbol{u v}}$ is applied to it?
(3) What is $\mathbf{R}_{\boldsymbol{u v}}(\boldsymbol{u} \times \boldsymbol{v})$?
(4) Write the matrix that represents $\mathbf{R}_{\boldsymbol{u v}}$ in the basis \mathcal{B}.

Problem 8. Consider the shear tensor $\mathbf{F}=\boldsymbol{I}+3 \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{3}+2 \boldsymbol{e}_{2} \otimes \boldsymbol{e}_{3}$.
(1) Write the matrix that represents \mathbf{F}^{\star} in the basis \mathcal{B}.
(2) Which is the area dilation factor of \mathbf{F} for surfaces parallel to $\operatorname{span}\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{3}\right\}$?
(3) Which is the area dilation factor of \mathbf{F} for surfaces parallel to $\operatorname{span}\left\{\boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$?

