PROBLEM SHEET ON LINEAR ALGEBRA AND DYNAMICAL SYSTEMS

Problem 1. Consider the matrices

$$
A=\left(\begin{array}{ccc}
2 & 1 & 3 \\
1 & 2 & 2 \\
0 & 0 & 2
\end{array}\right) \quad B=\left(\begin{array}{ccc}
3 & -1 & 2 \\
0 & 3 & 2 \\
0 & 0 & 1
\end{array}\right) \quad C=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta \\
0 & \sin \theta & \cos \theta
\end{array}\right)
$$

For each matrix A, B, C, find the eigenvalues and the corresponding eigenspaces, and decide if the matrix is diagonalizable.

Problem 2. Consider the following matrix, depending on a parameter $h \in \mathbb{R}$:

$$
A(h)=\left(\begin{array}{ccc}
2+h & 1 & 1 \\
1 & h & 1 \\
h & 1 & h
\end{array}\right)
$$

- For which values of h is the matrix $A(h)$ invertible?
- For which values of h is the matrix $A(h)$ symmetric?
- Discuss the value of the rank of $A(h)$, as h varies in \mathbb{R}.
- For which values of h is the vector $(1,1,1)$ in the range of $A(h)$?

Problem 3. Using the method of the eigenvalues, find the solution of the linear system of ODE given by

$$
\left\{\begin{array}{l}
x^{\prime}(t)=-2 x(t)+2 y(t) \\
y^{\prime}(t)=2 x(t)-5 y(t)
\end{array}\right.
$$

with the initial value

$$
\left\{\begin{array}{l}
x^{\prime}(0)=6 \\
y^{\prime}(0)=13
\end{array}\right.
$$

Find the critical points of (福气) and determine their type.
Problem 4. Using the method of the eigenvalues, find the general solution of the following linear system of ODE:

$$
\left\{\begin{array}{l}
x^{\prime}(t)=3 x(t) \\
y^{\prime}(t)=-2 z(t) \\
z^{\prime}(t)=2 y(t)
\end{array}\right.
$$

Extra challenge: draw a three-dimensional picture of the orbits of the system.

