EXERCISES IN TENSOR ALGEBRA: GEOMETRIC INTERPRETATIONS

ANDREA PEDRINI

Notations

In the following notes:

- \mathbb{R}^{3} is the three-dimensional Euclidean space;
- \mathcal{V} is the inner-product linear space of translations of \mathbb{R}^{3};
- $\mathcal{B}=\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)$ denotes a (positively oriented) basis of \mathcal{V}, hence $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$ are linearly independent unit vectors, pairwise orthogonal;
- "i.e." is the abbreviation for the Latin "id est", which means "that is";
- "e.g." is the abbreviation for the Latin "exempli gratia", which means "for example";
- "w.r.t." is the abbreviation for the English "with respect to".

The "Why?" sections contain some detailed proof of what is said in the other parts of these notes. In some cases, the "Why?" sections are long and boring. Don't be afraid: you don't have to study and recall them, but you can read them if you are interested in some deeper explanation of the results presented here.

1. InNer PRODUCt

Let \boldsymbol{u} and \boldsymbol{v} be two translations in \mathcal{V}. By using the basis \mathcal{B}, we write both \boldsymbol{u} and \boldsymbol{v} in Cartesian components:

$$
\begin{aligned}
& \boldsymbol{u}=u_{1} \boldsymbol{e}_{1}+u_{2} \boldsymbol{e}_{2}+u_{3} \boldsymbol{e}_{3}, \\
& \boldsymbol{v}=v_{1} \boldsymbol{e}_{1}+v_{2} \boldsymbol{e}_{2}+v_{3} \boldsymbol{e}_{3}
\end{aligned}
$$

where $u_{i}, v_{i} \in \mathbb{R}$ for $i=1,2,3$.
Definition 1. The inner product (or dot product) between \boldsymbol{u} and \boldsymbol{v} is the real number

$$
\boldsymbol{u} \cdot \boldsymbol{v}:=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}
$$

The inner product between the elements of the basis \mathcal{B} is given by the Kronecker Delta:

$$
\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{j}=\delta_{i j}:= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

whence the Cartesian components of \boldsymbol{u} and \boldsymbol{v} are

$$
u_{i}=\boldsymbol{u} \cdot \boldsymbol{e}_{i} \quad \text { and } \quad v_{i}=\boldsymbol{v} \cdot \boldsymbol{e}_{i}, \quad \text { for } i=1,2,3 .
$$

Definition 2. The length of a vector $\boldsymbol{u}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$ is

$$
|\boldsymbol{u}|:=\sqrt{\boldsymbol{u} \cdot \boldsymbol{u}}=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{2}} .
$$

Let $\vartheta_{\boldsymbol{u}, \boldsymbol{v}}$ be the (planar) angle between \boldsymbol{u} and \boldsymbol{v}. Then

$$
\boldsymbol{u} \cdot \boldsymbol{v}=|\boldsymbol{u} \| \boldsymbol{v}| \cos \vartheta_{\boldsymbol{u}, \boldsymbol{v}}
$$

$\boldsymbol{W h y}$? We can convince ourselves by considering first the dwo-dimensional Euclidean space \mathbb{R}^{2}. In this case, $\boldsymbol{u}=u_{1} \boldsymbol{e}_{1}+u_{2} \boldsymbol{e}_{2}$ and $\boldsymbol{v}=v_{1} \boldsymbol{e}_{1}+v_{2} \boldsymbol{e}_{2}$. Let α and β be the planar angles as in the following picture, and note that $\vartheta_{\boldsymbol{u}, \boldsymbol{v}}=\beta-\alpha$.

Then

$$
\begin{aligned}
u_{1} & =|\boldsymbol{u}| \cos \alpha \\
u_{2} & =|\boldsymbol{u}| \sin \alpha \\
v_{1} & =|\boldsymbol{v}| \cos \beta \\
v_{2} & =|\boldsymbol{v}| \sin \beta
\end{aligned}
$$

Whence

$$
\begin{aligned}
\boldsymbol{u} \cdot \boldsymbol{v} & =u_{1} v_{1}+u_{2} v_{2}= \\
& =|\boldsymbol{u} \| \boldsymbol{v}|(\cos \alpha \cos \beta+\sin \alpha \sin \beta)= \\
& =|\boldsymbol{u} \| \boldsymbol{v}| \cos (\beta-\alpha)= \\
& =|\boldsymbol{u} \| \boldsymbol{v}| \cos \vartheta_{\boldsymbol{u}, \boldsymbol{v}} .
\end{aligned}
$$

In \mathbb{R}^{3} (and, in general, in any \mathbb{R}^{n}), we can consider the vector $\boldsymbol{v}-\boldsymbol{u}$. By the law of cosines,

$$
|\boldsymbol{v}-\boldsymbol{u}|^{2}=|\boldsymbol{u}|^{2}+|\boldsymbol{v}|^{2}-2|\boldsymbol{u} \| \boldsymbol{v}| \cos \vartheta_{\boldsymbol{u}, \boldsymbol{v}} .
$$

On the other hand, by definition of length and by linearity of the inner product,

$$
|\boldsymbol{v}-\boldsymbol{u}|^{2}=(\boldsymbol{v}-\boldsymbol{u}) \cdot(\boldsymbol{v}-\boldsymbol{u})=\boldsymbol{v} \cdot \boldsymbol{v}-2 \boldsymbol{v} \cdot \boldsymbol{u}+\boldsymbol{u} \cdot \boldsymbol{u}=|\boldsymbol{u}|^{2}+|\boldsymbol{v}|^{2}-2 \boldsymbol{v} \cdot \boldsymbol{u}
$$

and hence $\boldsymbol{u} \cdot \boldsymbol{v}=|\boldsymbol{u} \| \boldsymbol{v}| \cos \vartheta_{\boldsymbol{u}, \boldsymbol{v}}$.

2. Representation of a tensor with a matrix (in a fixed basis)

Whenever we fix a basis for the space \mathcal{V} (e.g. the basis $\left.\mathcal{B}=\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)\right)$ we immediately have that the diads $\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}$ form a basis for the space $L(\mathcal{V})$ of all the (second-order) tensor $\mathbf{L}: \mathcal{V} \rightarrow \mathbb{R}$, and each tensor \mathbf{L} in $L(\mathcal{V})$ can be written as

$$
\mathbf{L}=\sum_{i, j=1}^{3} L_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}
$$

where $L_{i j}:=\boldsymbol{e}_{i} \cdot \mathbf{L} \boldsymbol{e}_{j}$ are the Cartesian components of \mathbf{L}.

For this reason we can always represent the tensor \mathbf{L} with respect to the basis \mathcal{B} by using the matrix

$$
[L]:=\left(L_{i j}\right)_{i, j=1,2,3}=\left(\begin{array}{ccc}
L_{11} & L_{12} & L_{13} \\
L_{21} & L_{22} & L_{23} \\
L_{31} & L_{32} & L_{33}
\end{array}\right)=\left(\begin{array}{cccc}
\boldsymbol{e}_{1} \cdot \mathbf{L} e_{1} & \boldsymbol{e}_{1} \cdot \mathbf{L} e_{2} & \boldsymbol{e}_{1} \cdot \mathbf{L} e_{3} \\
\boldsymbol{e}_{2} \cdot \mathbf{L} \boldsymbol{e}_{1} & \boldsymbol{e}_{2} \cdot \mathbf{L} e_{2} & \boldsymbol{e}_{2} \cdot \mathbf{L} e_{3} \\
\boldsymbol{e}_{3} \cdot \mathbf{L} \boldsymbol{e}_{1} & \boldsymbol{e}_{3} \cdot \mathbf{L} \boldsymbol{e}_{2} & \boldsymbol{e}_{3} \cdot \mathbf{L} e_{3}
\end{array}\right)
$$

whose columns are the vectors obtained by applying \mathbf{L} to the elements $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$ of the basis \mathcal{B}.

The matrices that represent \mathbf{L}^{\top} and \mathbf{L}^{-1} w.r.t. the basis \mathcal{B} are, respectively, $[L]^{\top}$ and $[L]^{-1}$.
$\boldsymbol{W h y}$? If we apply the tensor \mathbf{L} to a generic vector $\boldsymbol{u}=u_{1} \boldsymbol{e}_{1}+u_{2} \boldsymbol{e}_{2}+u_{3} \boldsymbol{e}_{3}$ in \mathcal{V} we obtain

$$
\begin{aligned}
\mathbf{L} \boldsymbol{u} & =\mathbf{L}\left(\sum_{j=1}^{3} u_{j} \boldsymbol{e}_{j}\right)=\sum_{j=1}^{3} u_{j} \mathbf{L} \boldsymbol{e}_{j}=\sum_{j=1}^{3}\left(\boldsymbol{u} \cdot \boldsymbol{e}_{j}\right) \mathbf{L} \boldsymbol{e}_{j}= \\
& =\sum_{j=1}^{3}\left(\boldsymbol{u} \cdot \boldsymbol{e}_{j}\right)\left(\sum_{i=1}^{3}\left(\mathbf{L} \boldsymbol{e}_{j} \cdot \boldsymbol{e}_{i}\right) \boldsymbol{e}_{i}\right)=\sum_{i, j=1}^{3}\left(\boldsymbol{u} \cdot \boldsymbol{e}_{j}\right)\left(\boldsymbol{e}_{i} \cdot \mathbf{L} \boldsymbol{e}_{j}\right) \boldsymbol{e}_{i}= \\
& =\sum_{i, j=1}^{3}\left(\boldsymbol{e}_{i} \cdot \mathbf{L} \boldsymbol{e}_{j}\right)\left(\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}\right) \boldsymbol{u}=\left(\sum_{i, j=1}^{3} L_{i, j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}\right) \boldsymbol{u} .
\end{aligned}
$$

Example 1. The matrices that represent the identity tensor \mathbf{I} and the null tensor $\mathbf{0}$ w.r.t any basis \mathcal{B} are

$$
[I]=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad[0]=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Example 2. W.r.t. \mathcal{B}, the projections $\mathbf{P}_{\|}\left(\boldsymbol{e}_{1}\right):=\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1}$ and $\mathbf{P}\left(\boldsymbol{e}_{1}\right):=\mathbf{I}-\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1}=$ $\boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2}+\boldsymbol{e}_{3} \otimes \boldsymbol{e}_{3}$ are respectively represented by the matrices

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Example 3. Let \mathbf{L} be the tensor that maps

$$
\boldsymbol{e}_{1} \mapsto 2 e_{1}+2 e_{2}, \quad \boldsymbol{e}_{2} \mapsto-\frac{1}{2} \boldsymbol{e}_{1}+\boldsymbol{e}_{2} \quad \text { and } \quad \boldsymbol{e}_{3} \mapsto \boldsymbol{e}_{3}
$$

Then, w.r.t. the basis $\mathcal{B}=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$, the matrices that represent \mathbf{L} and \mathbf{L}^{\top} are, respectively,

$$
[L]=\left(\begin{array}{ccc}
2 & -\frac{1}{2} & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \quad \text { and } \quad[L]^{\top}=\left(\begin{array}{ccc}
2 & 2 & 0 \\
-\frac{1}{2} & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

In order to find the matrix that represents the inverse \mathbf{L}^{-1}, we can proceed by computing directly $[L]^{-1}$. We consider a generic matrix

$$
[L]^{-1}=\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)
$$

and we impose the condition $[L]^{-1}[L]=[I]$:

$$
\left(\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right)\left(\begin{array}{ccc}
2 & -\frac{1}{2} & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

We obtain the systems

$$
\left\{\begin{array} { l }
{ 2 a + 2 b = 1 } \\
{ - \frac { 1 } { 2 } a + b = 0 } \\
{ c = 0 }
\end{array} \quad \left\{\begin{array} { l }
{ 2 d + 2 e = 0 } \\
{ - \frac { 1 } { 2 } d + e = 1 } \\
{ f = 0 }
\end{array} \quad \left\{\begin{array}{l}
2 g+2 h=0 \\
-\frac{1}{2} g+h=0 \\
i=1
\end{array}\right.\right.\right.
$$

with solutions

$$
\left\{\begin{array} { l }
{ a = \frac { 1 } { 3 } } \\
{ b = \frac { 1 } { 6 } } \\
{ c = 0 }
\end{array} \quad \left\{\begin{array} { l }
{ d = - \frac { 2 } { 3 } } \\
{ e = \frac { 2 } { 3 } } \\
{ f = 0 }
\end{array} \quad \left\{\begin{array}{l}
g=0 \\
h=0 \\
i=1
\end{array}\right.\right.\right.
$$

Then

$$
[L]^{-1}=\left(\begin{array}{ccc}
\frac{1}{3} & \frac{1}{6} & 0 \\
-\frac{2}{3} & \frac{2}{3} & 0 \\
0 & 0 & 1
\end{array}\right)
$$

3. Exterior Product

A tensor \mathbf{W} is skew if $\mathbf{W}^{\top}=-\mathbf{W}$. When \mathbf{W} is a skew tensor, we can always associate with \mathbf{W} a vector $\boldsymbol{w}(\mathbf{W})$, called the axial vector of \mathbf{W}, such that
(1) $\mathbf{W} \boldsymbol{w}(\mathbf{W})=\mathbf{0} \quad(\boldsymbol{w}(\mathbf{W})$ is in the axis $\mathcal{A}(\mathbf{W}):=\{\boldsymbol{u} \in \mathcal{V}: \mathbf{W} \boldsymbol{u}=\mathbf{0}\}$ of $\mathbf{W})$,
(2) $|\boldsymbol{w}(\mathbf{W})|^{2}=\frac{|\mathbf{W}|^{2}}{2}=\frac{\operatorname{tr}\left(\mathbf{W} \mathbf{W}^{\top}\right)}{2}$.

Conversely, the skew tensor associated with the vector \boldsymbol{w} is the skew tensor $\mathbf{W}(\boldsymbol{w})$ such that \boldsymbol{w} is its axial vector.
Actually, when we consider the skew tensor \mathbf{W} we can always find two different vectors that satisfy the two conditions above (if we call one of them \boldsymbol{w}, then the other is $-\boldsymbol{w})$. However, if we choose one of them to be the axial vector of \mathbf{W} and impose the linearity condition $\boldsymbol{w}\left(\mathbf{W}_{1}+\mathbf{W}_{2}\right)=\boldsymbol{w}\left(\mathbf{W}_{1}\right)+\boldsymbol{w}\left(\mathbf{W}_{2}\right)$, then the axial vectors of all the skew tensors of \mathcal{V} are automatically determined. This choice is strictly related to the orientation of the space \mathcal{V}. In these notes (and in the homework) we fix the positive orientation, which is the choice of the axial vectors such that

$$
\mathbf{W}\left(\boldsymbol{e}_{1}\right) \boldsymbol{e}_{2}=\boldsymbol{e}_{3}
$$

Definition 3. The exterior product (or cross product) between the two vectors \boldsymbol{u} and \boldsymbol{v} is the vector

$$
\boldsymbol{u} \times \boldsymbol{v}:=\mathbf{W}(\boldsymbol{u}) \boldsymbol{v}
$$

By choosing the positive orientation, we immediately obtain

$$
e_{1} \times e_{2}=e_{3}
$$

We also have

$$
\boldsymbol{e}_{2} \times \boldsymbol{e}_{3}=\boldsymbol{e}_{1} \quad \text { and } \quad e_{3} \times \boldsymbol{e}_{1}=\boldsymbol{e}_{2} .
$$

Moreover, the exterior product is linear in both the arguments, and $\boldsymbol{v} \times \boldsymbol{u}=-\boldsymbol{u} \times \boldsymbol{v}$.
In Cartesian components we have

$$
\boldsymbol{u} \times \boldsymbol{v}=\sum_{i, j, k=1}^{3} \varepsilon_{i j k} u_{j} v_{k} \boldsymbol{e}_{i}
$$

where $\varepsilon_{i j k}$ are the component of Ricci alternator (or also the 3-dimensional LeviCivita symbol)

$$
\varepsilon_{i j k}:= \begin{cases}1 & \text { if } i j k \text { is an even permutation of } 123 \\ -1 & \text { if } i j k \text { is an odd permutation of } 123 \\ 0 & \text { if } i j k \text { is not a permutation of } 123\end{cases}
$$

Note. An even permutation of 123 is a permutation that can be obtained from 123 by an even number of two-element exchanges. An odd permutation of 123 is a permutation that can be obtained from 123 by an odd number of two-element exchanges. Hence, the permutations of 123 are
even: $123 \quad 231 \quad 312, \quad$ odd: $132 \quad 213321$.
The exterior product can also be computed by using the formal determinant

$$
\boldsymbol{u} \times \boldsymbol{v}=\left|\begin{array}{ccc}
\boldsymbol{e}_{1} & \boldsymbol{e}_{2} & \boldsymbol{e}_{3} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right|=\left(u_{2} v_{3}-u_{3} v_{2}\right) \boldsymbol{e}_{1}+\left(u_{3} v_{1}-u_{1} v_{3}\right) \boldsymbol{e}_{2}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \boldsymbol{e}_{3}
$$

The vector $\boldsymbol{u} \times \boldsymbol{v}$ enjoys the following two interesting properties:
(1) it is orthogonal to both \boldsymbol{u} and \boldsymbol{v},
(2) its length is the area of the parallelogram"described by" \boldsymbol{u} and \boldsymbol{v}, whose vertices are the points $O, P_{\boldsymbol{u}}:=O+\boldsymbol{u}, P_{\boldsymbol{v}}:=O+\boldsymbol{v}$ and $P_{\boldsymbol{u}+\boldsymbol{v}}:=O+\boldsymbol{u}+\boldsymbol{v}$:

$$
|\boldsymbol{u} \times \boldsymbol{v}|=|\boldsymbol{u} \| \boldsymbol{v}| \sin \vartheta_{\boldsymbol{u}, \boldsymbol{v}}
$$

Moreover, in order to find the orientation of $\boldsymbol{u} \times \boldsymbol{v}$ we can use the right-hand rule, as shown in the following picture:

$\boldsymbol{W h y}$? The first property ($\boldsymbol{u} \times \boldsymbol{v}$ orthogonal to both \boldsymbol{u} and \boldsymbol{v}) follows immediately from the fact that $\mathbf{W}(\boldsymbol{u})$ is a skew tensor and \boldsymbol{u} is its axial vector:

$$
\begin{gathered}
(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{u}=\mathbf{W}(\boldsymbol{u}) \boldsymbol{v} \cdot \boldsymbol{u}=\boldsymbol{v} \cdot \mathbf{W}(\boldsymbol{u})^{\top} \boldsymbol{u}=-\boldsymbol{v} \cdot \mathbf{W}(\boldsymbol{u}) \boldsymbol{u}=-\boldsymbol{v} \cdot \mathbf{0}=0 \\
\mathbf{W}(\boldsymbol{u}) \boldsymbol{v} \cdot \boldsymbol{v}=\boldsymbol{v} \cdot \mathbf{W}(\boldsymbol{u})^{\top} \boldsymbol{v}=-\boldsymbol{v} \cdot \mathbf{W}(\boldsymbol{u}) \boldsymbol{v}, \text { whence }(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{v}=\mathbf{W}(\boldsymbol{u}) \boldsymbol{v} \cdot \boldsymbol{v}=0
\end{gathered}
$$

For the second property, we call \boldsymbol{n} the unit vector $\frac{\boldsymbol{u}}{|\boldsymbol{u}|}$, we consider any two mutually orthogonal unit vector \boldsymbol{b}_{1} and \boldsymbol{b}_{2} in the plane $\operatorname{span}\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right)$ orthogonal to \boldsymbol{n} and we suppose them to be oriented such that $\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}=\boldsymbol{n}$. Then

$$
\mathbf{W}(\boldsymbol{u})=|\boldsymbol{u}|\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}-\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)
$$

Indeed,

$$
|\boldsymbol{u}|\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}-\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right) \boldsymbol{u}=|\boldsymbol{u}|\left(\left(\boldsymbol{b}_{2} \cdot \boldsymbol{u}\right) \boldsymbol{b}_{1}-\left(\boldsymbol{b}_{1} \cdot \boldsymbol{u}\right) \boldsymbol{b}_{2}\right)=0
$$

because both \boldsymbol{b}_{1} and \boldsymbol{b}_{2} are orthogonal to \boldsymbol{u}, and

$$
\begin{aligned}
|\boldsymbol{u}|^{2}\left|\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}-\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right|^{2}= & |\boldsymbol{u}|^{2} \operatorname{tr}\left(\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}-\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)^{\top}\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}-\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)\right)= \\
= & |\boldsymbol{u}|^{2} \operatorname{tr}\left(\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}\right)^{\top}\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}\right)-\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}\right)^{\top}\left(\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)-\right. \\
& \left.\quad-\left(\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)^{\top}\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}\right)+\left(\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)^{\top}\left(\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)\right)= \\
= & |\boldsymbol{u}|^{2} \operatorname{tr}\left(\left(\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}\right)-\left(\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)\left(\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)-\right. \\
& \left.\quad-\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}\right)\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}\right)+\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}\right)\left(\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)\right)= \\
= & |\boldsymbol{u}|^{2} \operatorname{tr}\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{1}+\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{2}\right)=2|\boldsymbol{u}|^{2} .
\end{aligned}
$$

Let $\mathbf{P}_{\| \mid}(\boldsymbol{n}):=\boldsymbol{n} \otimes \boldsymbol{n}$ be the projection along the direction of \boldsymbol{n}, and let $\mathbf{P}(\boldsymbol{n}):=$ $I-\mathbf{P}_{\|}(\boldsymbol{n})=\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{1}+\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{2}$ be the projection onto the plane $\operatorname{span}\left(\boldsymbol{b}_{1}, \boldsymbol{b}_{2}\right)$.

$$
\begin{aligned}
\mathbf{W}(\boldsymbol{u})^{2}= & \mathbf{W}(\boldsymbol{u}) \mathbf{W}(\boldsymbol{u})=|\boldsymbol{u}|^{2}\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}-\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}-\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right) \\
= & |\boldsymbol{u}|^{2}\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}\right)\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}\right)-\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}\right)\left(\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)- \\
& \quad-\left(\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)\left(\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{2}\right)+\left(\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)\left(\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{1}\right)= \\
= & \frac{|\mathbf{W}(\boldsymbol{u})|^{2}}{2}\left(-\boldsymbol{b}_{1} \otimes \boldsymbol{b}_{1}-\boldsymbol{b}_{2} \otimes \boldsymbol{b}_{2}\right)=-\frac{|\mathbf{W}(\boldsymbol{u})|^{2}}{2} \mathbf{P}(\boldsymbol{n})
\end{aligned}
$$

Then

$$
\begin{aligned}
|\boldsymbol{u} \times \boldsymbol{v}| & =|\mathbf{W}(\boldsymbol{u}) \boldsymbol{v}|=\sqrt{\mathbf{W}(\boldsymbol{u}) \boldsymbol{v} \cdot \mathbf{W}(\boldsymbol{u}) \boldsymbol{v}}=\sqrt{\boldsymbol{v} \cdot \mathbf{W}(\boldsymbol{u})^{\top} \mathbf{W}(\boldsymbol{u}) \boldsymbol{v}}= \\
& =\sqrt{-\boldsymbol{v} \cdot \mathbf{W}^{2}(\boldsymbol{u}) \boldsymbol{v}}=\sqrt{\boldsymbol{v} \cdot \frac{|\mathbf{W}(\boldsymbol{u})|^{2}}{2} \mathbf{P}(\boldsymbol{n}) \boldsymbol{v}}=\frac{|\mathbf{W}(\boldsymbol{u})|}{\sqrt{2}} \sqrt{\boldsymbol{v} \cdot \mathbf{P}(\boldsymbol{n}) \boldsymbol{v}}
\end{aligned}
$$

Since $\mathbf{P}(\boldsymbol{n}) \boldsymbol{v}$ is the projection of \boldsymbol{v} onto the plane orthogonal to \boldsymbol{u}, we have

$$
\boldsymbol{v} \cdot \mathbf{P}(\boldsymbol{n}) \boldsymbol{v}=\left(\mathbf{P}_{\|}(\boldsymbol{n}) \boldsymbol{v}+\mathbf{P}(\boldsymbol{n}) \boldsymbol{v}\right) \cdot \mathbf{P}(\boldsymbol{n}) \boldsymbol{v}=\mathbf{P}(\boldsymbol{n}) \boldsymbol{v} \cdot \mathbf{P}(\boldsymbol{n}) \boldsymbol{v}=|\mathbf{P}(\boldsymbol{n}) \boldsymbol{v}|^{2}
$$

and $|\mathbf{P}(\boldsymbol{n}) \boldsymbol{v}|=|\boldsymbol{v}| \sin \vartheta_{\boldsymbol{n}, \boldsymbol{v}}=|\boldsymbol{v}| \sin \vartheta_{\boldsymbol{u}, \boldsymbol{v}}$. Hence

$$
|\boldsymbol{u} \times \boldsymbol{v}|=\frac{|\mathbf{W}(\boldsymbol{u})|}{\sqrt{2}} \sqrt{|\mathbf{P}(\boldsymbol{n}) \boldsymbol{v}|^{2}}=|\boldsymbol{u} \| \boldsymbol{v}| \sin \vartheta_{\boldsymbol{u}, \boldsymbol{v}}
$$

4. Determinant

Definition 4. A skew trilinear form is any map $\alpha: \mathcal{V} \times \mathcal{V} \times \mathcal{V} \rightarrow \mathbb{R}$ such that
(1) α is linear in each argument
(2) $\alpha(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})=-\alpha(\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{v})=-\alpha(\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{u})=-\alpha(\boldsymbol{v}, \boldsymbol{u}, \boldsymbol{w}) \quad \forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}$.

An example of skew trilinear form is the triple product (also called mixed prod$u c t$):

$$
\beta:(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \mapsto \boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w} .
$$

The linearity property follows immediately from the linearity of both the inner and the exterior products. Moreover we have

$$
\begin{aligned}
-\boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w} & =(-\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w}=\boldsymbol{v} \times \boldsymbol{u} \cdot \boldsymbol{w} \\
& =-\sum_{i, j, k=1}^{3} \varepsilon_{i j k} u_{j} v_{k} w_{i}=\sum_{i, j, k=1}^{3} \varepsilon_{k j i} u_{j} v_{k} w_{i}=\boldsymbol{u} \times \boldsymbol{w} \cdot \boldsymbol{v} \\
& =-\sum_{i, j, k=1}^{3} \varepsilon_{i j k} u_{j} v_{k} w_{i}=\sum_{i, j, k=1}^{3} \varepsilon_{j i k} u_{j} v_{k} w_{i}=\boldsymbol{w} \times \boldsymbol{v} \cdot \boldsymbol{u} .
\end{aligned}
$$

We call \mathcal{P} the prism in \mathbb{R}^{3} "described by" $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$, that is built in this way:

- take the origin O of \mathbb{R}^{3} and the points $P_{\boldsymbol{u}}:=O+\boldsymbol{u}, P_{\boldsymbol{v}}:=O+\boldsymbol{v}$ and $P_{\boldsymbol{w}}:=O+\boldsymbol{w} ;$
- three edges of \mathcal{P} are the segments $O P_{\boldsymbol{u}}, O P_{\boldsymbol{v}}$ and $O P_{\boldsymbol{w}}$;
- the others edges are already completely determined (because \mathcal{P} is a prism).

As we can see in the picture above, the absolute value $|\boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w}|$ of $\boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w}$ is the volume of the prism \mathcal{P}. Indeed:

$$
\boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w}=\left|\boldsymbol{u} \times \boldsymbol{v}\left\|\boldsymbol{w}\left|\sin \vartheta_{\boldsymbol{u} \times \boldsymbol{v}, \boldsymbol{w}}=|\boldsymbol{u} \| \boldsymbol{v}| \cos \vartheta_{\boldsymbol{u}, \boldsymbol{v}}\right| \boldsymbol{w} \mid \sin \vartheta_{\boldsymbol{u} \times \boldsymbol{v}, \boldsymbol{w}}\right.\right.
$$

Definition 5. The determinant of a tensor \mathbf{L} is the real number $\operatorname{det} \mathbf{L}$ such that

$$
\alpha(\mathbf{L} \boldsymbol{u}, \mathbf{L} \boldsymbol{v}, \mathbf{L} \boldsymbol{w})=\operatorname{det} \mathbf{L} \alpha(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})
$$

for all vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ and for every skew trilinear form α which is not the null form. It turns out that $\operatorname{det} \mathbf{L}=\operatorname{det}[L]$, for any basis \mathcal{B}.

In particular, we can fix any three linearly independent vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ and we can consider their triple product $\boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w}$. Then, for each tensor \mathbf{L} :

$$
\operatorname{det} \mathbf{L}=\frac{\mathbf{L} \boldsymbol{u} \times \mathbf{L} \boldsymbol{v} \cdot \mathbf{L} \boldsymbol{w}}{\boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w}}
$$

In the same way as we did for the prism \mathcal{P}, we call $\mathbf{L} \mathcal{P}$ the prism in \mathbb{R}^{3} "described by" $\mathbf{L} \boldsymbol{u}, \mathbf{L} \boldsymbol{v}, \mathbf{L} \boldsymbol{w}$. Geometrically, we have that
(1) (whenever \mathbf{L} is invertible) the sign of $\operatorname{det} \mathbf{L}$ is positive if the orientation of $(\mathbf{L} \boldsymbol{u}, \mathbf{L} \boldsymbol{v}, \mathbf{L} \boldsymbol{w})$ is the same as the orientation of $(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})$ and negative otherwise;
(2) the absolute value of $\operatorname{det} \mathbf{L}$ is the ratio between the volume of the prism $\mathbf{L} \mathcal{P}$ and the prism \mathcal{P} :

$$
|\operatorname{det} \mathbf{L}|=\frac{|\mathbf{L} \boldsymbol{u} \times \mathbf{L} \boldsymbol{v} \cdot \mathbf{L} \boldsymbol{w}|}{|\boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w}|}=\frac{\operatorname{vol}(\mathbf{L} \mathcal{P})}{\operatorname{vol}(\mathcal{P})}
$$

The last property tells us that $|\operatorname{det} \mathbf{L}|$ can be geometrically interpreted as a volume dilation factor.
Sometimes it can be useful to take as $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ the elements $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$ of the basis \mathcal{B}. In this case, the prism \mathcal{P} is a unit cube and its volume $\left|\boldsymbol{e}_{1} \times \boldsymbol{e}_{2} \cdot \boldsymbol{e}_{3}\right|=\boldsymbol{e}_{1} \times \boldsymbol{e}_{2} \cdot \boldsymbol{e}_{3}$ is 1 . Then

$$
\operatorname{det} \mathbf{L}=\mathbf{L} \boldsymbol{e}_{1} \times \mathbf{L} \boldsymbol{e}_{2} \cdot \mathbf{L} \boldsymbol{e}_{3}
$$

(If \mathcal{B} is not positively oriented, then $\boldsymbol{e}_{1} \times \boldsymbol{e}_{2} \cdot \boldsymbol{e}_{3}=-1$ and $\operatorname{det} \mathbf{L}=-\mathbf{L} \boldsymbol{e}_{1} \times \mathbf{L} \boldsymbol{e}_{2} \cdot \mathbf{L} \boldsymbol{e}_{3}$.)
Moreover, since \mathbf{L}^{-1} maps $\mathbf{L} \boldsymbol{e}_{1}, \mathbf{L} \boldsymbol{e}_{2}, \mathbf{L} \boldsymbol{e}_{3}$ back to, respectively, $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$, we can immediately check that

$$
\operatorname{det} \mathbf{L}^{-1}=\frac{\mathbf{L}^{-1} \mathbf{L} \boldsymbol{e}_{1} \times \mathbf{L}^{-1} \mathbf{L} \boldsymbol{e}_{2} \cdot \mathbf{L}^{-1} \mathbf{L} \boldsymbol{e}_{3}}{\mathbf{L} \boldsymbol{e}_{1} \times \mathbf{L} \boldsymbol{e}_{2} \cdot \mathbf{L} \boldsymbol{e}_{3}}=\frac{\boldsymbol{e}_{1} \times \boldsymbol{e}_{2} \cdot \boldsymbol{e}_{3}}{\mathbf{L} \boldsymbol{e}_{1} \times \mathbf{L} \boldsymbol{e}_{2} \cdot \mathbf{L} \boldsymbol{e}_{3}}=\frac{1}{\operatorname{det} \mathbf{L}}
$$

Example 4. The projection $\mathbf{P}\left(\boldsymbol{e}_{1}\right)$ is not invertible and "squeezes" the unit cube described by $\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}$ into the unit square described by $\boldsymbol{e}_{2}, \boldsymbol{e}_{3}$: its determinant, indeed, is

$$
\begin{aligned}
\operatorname{det} \mathbf{L}= & \mathbf{P}\left(\boldsymbol{e}_{1}\right) \boldsymbol{e}_{1} \times \mathbf{P}\left(\boldsymbol{e}_{1}\right) \boldsymbol{e}_{2} \cdot \mathbf{P}\left(\boldsymbol{e}_{1}\right) \boldsymbol{e}_{3}= \\
= & \left(\boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2} \boldsymbol{e}_{1}+\boldsymbol{e}_{3} \otimes \boldsymbol{e}_{3} \boldsymbol{e}_{1}\right) \times\left(\boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2} \boldsymbol{e}_{2}+\boldsymbol{e}_{3} \otimes \boldsymbol{e}_{3} \boldsymbol{e}_{2}\right) \\
& \quad \cdot\left(\boldsymbol{e}_{3} \otimes \boldsymbol{e}_{3} \boldsymbol{e}_{3}+\boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2} \boldsymbol{e}_{3}\right)= \\
= & \mathbf{0} \times \boldsymbol{e}_{2} \cdot \boldsymbol{e}_{3}=\mathbf{0} \times \boldsymbol{e}_{3}=0
\end{aligned}
$$

Example 5. The tensor \mathbf{L} defined in the Example 3 has

$$
\begin{aligned}
\operatorname{det} \mathbf{L} & =\mathbf{L} \boldsymbol{e}_{1} \times \mathbf{L} \boldsymbol{e}_{2} \cdot \mathbf{L} \boldsymbol{e}_{3}=\left(2 \boldsymbol{e}_{1}+2 \boldsymbol{e}_{2}\right) \times\left(-\frac{1}{2} \boldsymbol{e}_{1}+\boldsymbol{e}_{2}\right) \cdot \boldsymbol{e}_{3}= \\
& =3 \boldsymbol{e}_{3} \cdot \boldsymbol{e}_{3}=3
\end{aligned}
$$

Example 6. We consider the shear tensor $\mathbf{F}:=\mathbf{I}+\gamma \boldsymbol{e}_{2} \otimes \boldsymbol{e}_{3}$, with $0<\gamma \in \mathbb{R}$. (A "shear" is a strain in which parallel layers are laterally shifted.)
Since $\mathbf{F} \boldsymbol{e}_{1}=\boldsymbol{e}_{1}, \mathbf{F} \boldsymbol{e}_{2}=\boldsymbol{e}_{2}$ and $\mathbf{F} \boldsymbol{e}_{3}=\gamma \boldsymbol{e}_{2}+\boldsymbol{e}_{3}, \mathbf{F}$ deforms the unit cube in the following way:

As we can see from the picture, \mathbf{F} does not change volumes: indeed, its determinant is

$$
\operatorname{det} \mathbf{F}=\mathbf{F} \boldsymbol{e}_{1} \times \mathbf{F} \boldsymbol{e}_{2} \cdot \mathbf{F} \boldsymbol{e}_{3}=\boldsymbol{e}_{1} \times \boldsymbol{e}_{2} \cdot\left(\gamma \boldsymbol{e}_{2}+\boldsymbol{e}_{3}\right)=\boldsymbol{e}_{3} \cdot\left(\gamma \boldsymbol{e}_{2}+\boldsymbol{e}_{3}\right)=1
$$

5. Adjugate

Definition 6. The adjugate of the invertible tensor \mathbf{L} is the tensor \mathbf{L}^{*} such that

$$
\mathbf{L}^{*}(\boldsymbol{u} \times \boldsymbol{v})=\mathbf{L} \boldsymbol{u} \times \mathbf{L} \boldsymbol{v} \quad \forall \boldsymbol{u}, \boldsymbol{v} \in \mathcal{V}
$$

The adjugate can also be written as $\mathbf{L}^{*}=\operatorname{det} \mathbf{L}\left(\mathbf{L}^{-1}\right)^{\top}=(\operatorname{det} \mathbf{L}) \mathbf{L}^{-\top}=\operatorname{det} \mathbf{L}\left(\mathbf{L}^{\top}\right)^{-1}$.
$\boldsymbol{W h y}$? For any vector \boldsymbol{w} we have

$$
\boldsymbol{u} \times \boldsymbol{v} \cdot\left(\mathbf{L}^{*}\right)^{\top} \mathbf{L} \boldsymbol{w}=\mathbf{L}^{*}(\boldsymbol{u} \times \boldsymbol{v}) \cdot \mathbf{L} \boldsymbol{w}=\mathbf{L} \boldsymbol{u} \times \mathbf{L} \boldsymbol{v} \cdot \mathbf{L} \boldsymbol{w}=\operatorname{det} \mathbf{L}(\boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w})
$$

whence $\left(\mathbf{L}^{*}\right)^{\top}=\operatorname{det} \mathbf{L} \mathbf{L}^{-1}$ and $\mathbf{L}^{*}=\operatorname{det} \mathbf{L}\left(\mathbf{L}^{-1}\right)^{\top}$.

We call $\mathcal{P} a$ the parallelogram "described by" \boldsymbol{u} and \boldsymbol{v}, and $\mathbf{L} \mathcal{P} a$ the parallelogram "described by" $\boldsymbol{L u}$ and $\boldsymbol{L v}$. Then $|\boldsymbol{u} \times \boldsymbol{v}|$ and $|\mathbf{L} \boldsymbol{u} \times \mathbf{L} \boldsymbol{v}|$ are, respectively, the area of $\mathcal{P} a$ and the area of $\mathbf{L} \mathcal{P} a$, and

$$
\frac{\operatorname{area}(\mathbf{L} \mathcal{P} a)}{\operatorname{area}(\mathcal{P} a)}=\frac{|\mathbf{L} \boldsymbol{u} \times \mathbf{L} \boldsymbol{v}|}{|\boldsymbol{u} \times \boldsymbol{v}|}=\frac{\left|\mathbf{L}^{*}(\boldsymbol{u} \times \boldsymbol{v})\right|}{|\boldsymbol{u} \times \boldsymbol{v}|}=\left|\mathbf{L}^{*}\left(\frac{\boldsymbol{u} \times \boldsymbol{v}}{|\boldsymbol{u} \times \boldsymbol{v}|}\right)\right|=\left|\mathbf{L}^{*} \boldsymbol{n}\right|
$$

where $\boldsymbol{n}:=\frac{\boldsymbol{u} \times \boldsymbol{v}}{|\boldsymbol{u} \times \boldsymbol{v}|}$ is the normal vector to the parallelogram $\mathcal{P} a$. Hence, the geometric interpretation of the adjugate of \mathbf{L} is that, whenever we take a surface \mathcal{S} and its normal vector \boldsymbol{n}, the value $\left|\mathbf{L}^{*} \boldsymbol{n}\right|$ is the area dilation factor of the surfaces parallel to \mathcal{S}.

Example 7. Let $\mathbf{F}:=\mathbf{I}+\gamma \boldsymbol{e}_{2} \otimes \boldsymbol{e}_{3}$ be the shear tensor as in the Example 6. The matrices which represents $\mathbf{F}, \mathbf{F}^{-1}$ and \mathbf{F}^{*} w.r.t. \mathcal{B} are

$$
[F]=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & \gamma \\
0 & 0 & 1
\end{array}\right) \quad[F]^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & -\gamma \\
0 & 0 & 1
\end{array}\right) \quad[F]^{*}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\gamma & 1
\end{array}\right)
$$

Since $\mathbf{F}^{*} \boldsymbol{e}_{1}=\boldsymbol{e}_{1}$ and $\mathbf{F}^{*} \boldsymbol{e}_{3}=\boldsymbol{e}_{3}$, the tensor \mathbf{F} does not change the areas of the surfaces parallel to either the vertical plane $\operatorname{span}\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}\right)$ or the horizontal plane
$\operatorname{span}\left(\boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)$. For the surfaces parallel to the vertical plane $\operatorname{span}\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{\boldsymbol{3}}\right)$, instead, \mathbf{F} makes the areas increase of a factor

$$
\left|\mathbf{F}^{*} \boldsymbol{e}_{2}\right|=\left|\boldsymbol{e}_{2}-\gamma \boldsymbol{e}_{3}\right|=\sqrt{1+\gamma^{2}} .
$$

