EXERCISES IN TENSOR ALGEBRA: GEOMETRIC INTERPRETATIONS

ANDREA PEDRINI

NOTATIONS

In the following notes:

- \mathbb{R}^3 is the three-dimensional Euclidean space;
- \mathcal{V} is the inner-product linear space of translations of \mathbb{R}^3 ;
- $\mathcal{B} = (\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3)$ denotes a (positively oriented) basis of \mathcal{V} , hence $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ are linearly independent unit vectors, pairwise orthogonal;
- "i.e." is the abbreviation for the Latin "id est", which means "that is";
- "e.g." is the abbreviation for the Latin "exempli gratia", which means "for example";
- "w.r.t." is the abbreviation for the English "with respect to".

The "*Why*?" sections contain some detailed proof of what is said in the other parts of these notes. In some cases, the "*Why*?" sections are long and boring. Don't be afraid: you don't have to study and recall them, but you can read them if you are interested in some deeper explanation of the results presented here.

1. INNER PRODUCT

Let u and v be two translations in \mathcal{V} . By using the basis \mathcal{B} , we write both u and v in *Cartesian components*:

$$u = u_1 e_1 + u_2 e_2 + u_3 e_3,$$

 $v = v_1 e_1 + v_2 e_2 + v_3 e_3,$

where $u_i, v_i \in \mathbb{R}$ for i = 1, 2, 3.

Definition 1. The *inner product* (or *dot product*) between \boldsymbol{u} and \boldsymbol{v} is the real number

$$\boldsymbol{u}\cdot\boldsymbol{v}:=u_1v_1+u_2v_2+u_3v_3.$$

The inner product between the elements of the basis \mathcal{B} is given by the *Kronecker Delta*:

$$\boldsymbol{e}_i \cdot \boldsymbol{e}_j = \delta_{ij} := \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

whence the Cartesian components of \boldsymbol{u} and \boldsymbol{v} are

$$u_i = \boldsymbol{u} \cdot \boldsymbol{e}_i$$
 and $v_i = \boldsymbol{v} \cdot \boldsymbol{e}_i$, for $i = 1, 2, 3$.

Definition 2. The *length* of a vector $\boldsymbol{u} = u_1v_1 + u_2v_2 + u_3v_3$ is

$$|\boldsymbol{u}| := \sqrt{\boldsymbol{u} \cdot \boldsymbol{u}} = \sqrt{u_1^2 + u_2^2 + u_3^2}.$$

Let $\vartheta_{u,v}$ be the (planar) angle between u and v. Then

$$\boldsymbol{u}\cdot\boldsymbol{v}=|\boldsymbol{u}||\boldsymbol{v}|\cos\vartheta_{\boldsymbol{u},\boldsymbol{v}}.$$

Why? We can convince ourselves by considering first the dwo-dimensional Euclidean space \mathbb{R}^2 . In this case, $\boldsymbol{u} = u_1 \boldsymbol{e}_1 + u_2 \boldsymbol{e}_2$ and $\boldsymbol{v} = v_1 \boldsymbol{e}_1 + v_2 \boldsymbol{e}_2$. Let α and β be the planar angles as in the following picture, and note that $\vartheta_{\boldsymbol{u},\boldsymbol{v}} = \beta - \alpha$.

In \mathbb{R}^3 (and, in general, in any \mathbb{R}^n), we can consider the vector $\boldsymbol{v} - \boldsymbol{u}$. By the law of cosines,

$$|\boldsymbol{v}-\boldsymbol{u}|^2 = |\boldsymbol{u}|^2 + |\boldsymbol{v}|^2 - 2|\boldsymbol{u}||\boldsymbol{v}|\cos\vartheta_{\boldsymbol{u},\boldsymbol{v}}.$$

On the other hand, by definition of length and by linearity of the inner product,

$$|v - u|^2 = (v - u) \cdot (v - u) = v \cdot v - 2v \cdot u + u \cdot u = |u|^2 + |v|^2 - 2v \cdot u$$

and hence $\boldsymbol{u} \cdot \boldsymbol{v} = |\boldsymbol{u}| |\boldsymbol{v}| \cos \vartheta_{\boldsymbol{u}, \boldsymbol{v}}$.

2. Representation of a tensor with a matrix (in a fixed basis)

Whenever we fix a basis for the space \mathcal{V} (e.g. the basis $\mathcal{B} = (e_1, e_2, e_3)$) we immediately have that the diads $e_i \otimes e_j$ form a basis for the space $L(\mathcal{V})$ of all the (second-order) tensor $\mathbf{L} : \mathcal{V} \to \mathbb{R}$, and each tensor \mathbf{L} in $L(\mathcal{V})$ can be written as

$$\mathbf{L} = \sum_{i,j=1}^{3} L_{ij} \boldsymbol{e}_i \otimes \boldsymbol{e}_j,$$

where $L_{ij} := \boldsymbol{e}_i \cdot \mathbf{L} \boldsymbol{e}_j$ are the *Cartesian components* of **L**.

For this reason we can always represent the tensor \mathbf{L} with respect to the basis \mathcal{B} by using the matrix

$$[L] := (L_{ij})_{i,j=1,2,3} = \begin{pmatrix} L_{11} & L_{12} & L_{13} \\ L_{21} & L_{22} & L_{23} \\ L_{31} & L_{32} & L_{33} \end{pmatrix} = \begin{pmatrix} e_1 \cdot \mathbf{L}e_1 & e_1 \cdot \mathbf{L}e_2 & e_1 \cdot \mathbf{L}e_3 \\ e_2 \cdot \mathbf{L}e_1 & e_2 \cdot \mathbf{L}e_2 & e_2 \cdot \mathbf{L}e_3 \\ e_3 \cdot \mathbf{L}e_1 & e_3 \cdot \mathbf{L}e_2 & e_3 \cdot \mathbf{L}e_3 \end{pmatrix}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \downarrow \qquad \downarrow e_1 \qquad \mathbf{L}e_2 \qquad \mathbf{L}e_3$$

whose columns are the vectors obtained by applying **L** to the elements e_1, e_2, e_3 of the basis \mathcal{B} .

The matrices that represent \mathbf{L}^{\top} and \mathbf{L}^{-1} w.r.t. the basis \mathcal{B} are, respectively, $[L]^{\top}$ and $[L]^{-1}$.

Why? If we apply the tensor **L** to a generic vector $u = u_1e_1 + u_2e_2 + u_3e_3$ in \mathcal{V} we obtain

$$\mathbf{L}\boldsymbol{u} = \mathbf{L}\left(\sum_{j=1}^{3} u_{j}\boldsymbol{e}_{j}\right) = \sum_{j=1}^{3} u_{j}\mathbf{L}\boldsymbol{e}_{j} = \sum_{j=1}^{3} (\boldsymbol{u} \cdot \boldsymbol{e}_{j})\mathbf{L}\boldsymbol{e}_{j} =$$
$$= \sum_{j=1}^{3} (\boldsymbol{u} \cdot \boldsymbol{e}_{j})\left(\sum_{i=1}^{3} (\mathbf{L}\boldsymbol{e}_{j} \cdot \boldsymbol{e}_{i})\boldsymbol{e}_{i}\right) = \sum_{i,j=1}^{3} (\boldsymbol{u} \cdot \boldsymbol{e}_{j})(\boldsymbol{e}_{i} \cdot \mathbf{L}\boldsymbol{e}_{j})\boldsymbol{e}_{i} =$$
$$= \sum_{i,j=1}^{3} (\boldsymbol{e}_{i} \cdot \mathbf{L}\boldsymbol{e}_{j})(\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j})\boldsymbol{u} = \left(\sum_{i,j=1}^{3} L_{i,j}\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}\right)\boldsymbol{u}.$$

Example 1. The matrices that represent the identity tensor I and the null tensor $\mathbf{0}$ w.r.t *any* basis \mathcal{B} are

$$[I] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad [0] = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Example 2. W.r.t. \mathcal{B} , the projections $\mathbf{P}_{||}(e_1) := e_1 \otimes e_1$ and $\mathbf{P}(e_1) := \mathbf{I} - e_1 \otimes e_1 = e_2 \otimes e_2 + e_3 \otimes e_3$ are respectively represented by the matrices

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}.$$

Example 3. Let **L** be the tensor that maps

$$e_1 \mapsto 2e_1 + 2e_2$$
, $e_2 \mapsto -\frac{1}{2}e_1 + e_2$ and $e_3 \mapsto e_3$.

Then, w.r.t. the basis $\mathcal{B} = \{e_1, e_2, e_3\}$, the matrices that represent **L** and \mathbf{L}^{\top} are, respectively,

$$[L] = \begin{pmatrix} 2 & -\frac{1}{2} & 0\\ 2 & 1 & 0\\ 0 & 0 & 1 \end{pmatrix} \quad \text{and} \quad [L]^{\top} = \begin{pmatrix} 2 & 2 & 0\\ -\frac{1}{2} & 1 & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

In order to find the matrix that represents the inverse \mathbf{L}^{-1} , we can proceed by computing directly $[L]^{-1}$. We consider a generic matrix

$$L]^{-1} = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}$$

and we impose the condition $[L]^{-1}[L] = [I]$:

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \begin{pmatrix} 2 & -\frac{1}{2} & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

We obtain the systems

$$\begin{cases} 2a+2b=1\\ -\frac{1}{2}a+b=0\\ c=0 \end{cases} \qquad \begin{cases} 2d+2e=0\\ -\frac{1}{2}d+e=1\\ f=0 \end{cases} \qquad \begin{cases} 2g+2h=0\\ -\frac{1}{2}g+h=0\\ i=1 \end{cases}$$

with solutions

$$\begin{cases} a = \frac{1}{3} \\ b = \frac{1}{6} \\ c = 0 \end{cases} \qquad \begin{cases} d = -\frac{2}{3} \\ e = \frac{2}{3} \\ f = 0 \end{cases} \qquad \begin{cases} g = 0 \\ h = 0 \\ i = 1 \end{cases}$$

Then

$$[L]^{-1} = \begin{pmatrix} \frac{1}{3} & \frac{1}{6} & 0\\ -\frac{2}{3} & \frac{2}{3} & 0\\ 0 & 0 & 1 \end{pmatrix}$$

3. Exterior product

A tensor **W** is *skew* if $\mathbf{W}^{\top} = -\mathbf{W}$. When **W** is a skew tensor, we can always associate with **W** a vector $w(\mathbf{W})$, called the *axial vector* of **W**, such that

(1)
$$\mathbf{W}\boldsymbol{w}(\mathbf{W}) = \mathbf{0}$$
 ($\boldsymbol{w}(\mathbf{W})$ is in the axis $\mathcal{A}(\mathbf{W}) := \{\boldsymbol{u} \in \mathcal{V} : \mathbf{W}\boldsymbol{u} = \mathbf{0}\}$ of \mathbf{W}),
(2) $|\boldsymbol{w}(\mathbf{W})|^2 = \frac{|\mathbf{W}|^2}{2} = \frac{\operatorname{tr}(\mathbf{W}\mathbf{W}^{\top})}{2}$.

Conversely, the *skew tensor associated with* the vector w is the skew tensor $\mathbf{W}(w)$ such that w is its axial vector.

Actually, when we consider the skew tensor \mathbf{W} we can always find two different vectors that satisfy the two conditions above (if we call one of them \boldsymbol{w} , then the other is $-\boldsymbol{w}$). However, if we choose one of them to be the axial vector of \mathbf{W} and impose the linearity condition $\boldsymbol{w}(\mathbf{W}_1 + \mathbf{W}_2) = \boldsymbol{w}(\mathbf{W}_1) + \boldsymbol{w}(\mathbf{W}_2)$, then the axial vectors of all the skew tensors of \mathcal{V} are automatically determined. This choice is strictly related to the *orientation* of the space \mathcal{V} . In these notes (and in the homework) we fix the *positive orientation*, which is the choice of the axial vectors such that

$$\mathbf{W}(\boldsymbol{e}_1)\boldsymbol{e}_2 = \boldsymbol{e}_3.$$

Definition 3. The *exterior product* (or *cross product*) between the two vectors \boldsymbol{u} and \boldsymbol{v} is the vector

$$\boldsymbol{u} \times \boldsymbol{v} := \mathbf{W}(\boldsymbol{u})\boldsymbol{v}.$$

By choosing the positive orientation, we immediately obtain

 $\boldsymbol{e}_1 \times \boldsymbol{e}_2 = \boldsymbol{e}_3.$

We also have

$$e_2 \times e_3 = e_1$$
 and $e_3 \times e_1 = e_2$.

Moreover, the exterior product is linear in both the arguments, and $v \times u = -u \times v$. In Cartesian components we have

$$\boldsymbol{u} \times \boldsymbol{v} = \sum_{i,j,k=1}^{3} \varepsilon_{ijk} u_j v_k \boldsymbol{e}_i,$$

where ε_{ijk} are the component of *Ricci alternator* (or also the 3-dimensional Levi-Civita symbol)

$$\varepsilon_{ijk} := \begin{cases} 1 & \text{if } ijk \text{ is an even permutation of } 123 \\ -1 & \text{if } ijk \text{ is an odd permutation of } 123 \\ 0 & \text{if } ijk \text{ is not a permutation of } 123 \end{cases}$$

Note. An even permutation of 123 is a permutation that can be obtained from 123 by an even number of two-element exchanges. An odd permutation of 123 is a permutation that can be obtained from 123 by an odd number of two-element exchanges. Hence, the permutations of 123 are

The exterior product can also be computed by using the *formal determinant*

$$\boldsymbol{u} \times \boldsymbol{v} = \begin{vmatrix} \boldsymbol{e}_1 & \boldsymbol{e}_2 & \boldsymbol{e}_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = (u_2 v_3 - u_3 v_2) \boldsymbol{e}_1 + (u_3 v_1 - u_1 v_3) \boldsymbol{e}_2 + (u_1 v_2 - u_2 v_1) \boldsymbol{e}_3.$$

The vector $\boldsymbol{u} \times \boldsymbol{v}$ enjoys the following two interesting properties:

- (1) it is orthogonal to both \boldsymbol{u} and \boldsymbol{v} ,
- (2) its length is the area of the parallelogram "described by" \boldsymbol{u} and \boldsymbol{v} , whose vertices are the points $O, P_{\boldsymbol{u}} := O + \boldsymbol{u}, P_{\boldsymbol{v}} := O + \boldsymbol{v}$ and $P_{\boldsymbol{u}+\boldsymbol{v}} := O + \boldsymbol{u} + \boldsymbol{v}$:

$$|\boldsymbol{u} \times \boldsymbol{v}| = |\boldsymbol{u}| |\boldsymbol{v}| \sin \vartheta_{\boldsymbol{u},\boldsymbol{v}}.$$

Moreover, in order to find the orientation of $\boldsymbol{u} \times \boldsymbol{v}$ we can use the right-hand rule, as shown in the following picture:

A. PEDRINI

Why? The first property $(u \times v \text{ orthogonal to both } u \text{ and } v)$ follows immediately from the fact that $\mathbf{W}(u)$ is a skew tensor and u is its axial vector:

$$(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{u} = \mathbf{W}(\boldsymbol{u})\boldsymbol{v} \cdot \boldsymbol{u} = \boldsymbol{v} \cdot \mathbf{W}(\boldsymbol{u})^{\top} \boldsymbol{u} = -\boldsymbol{v} \cdot \mathbf{W}(\boldsymbol{u})\boldsymbol{u} = -\boldsymbol{v} \cdot \mathbf{0} = 0;$$

 $\mathbf{W}(\boldsymbol{u})\boldsymbol{v} \cdot \boldsymbol{v} = \boldsymbol{v} \cdot \mathbf{W}(\boldsymbol{u})^{\top} \boldsymbol{v} = -\boldsymbol{v} \cdot \mathbf{W}(\boldsymbol{u})\boldsymbol{v}, \text{ whence } (\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{v} = \mathbf{W}(\boldsymbol{u})\boldsymbol{v} \cdot \boldsymbol{v} = 0.$

For the second property, we call n the unit vector $\frac{u}{|u|}$, we consider any two mutually orthogonal unit vector b_1 and b_2 in the plane span (b_1, b_2) orthogonal to n and we suppose them to be oriented such that $b_1 \otimes b_2 = n$. Then

$$\mathbf{W}(\boldsymbol{u}) = |\boldsymbol{u}|(\boldsymbol{b}_1 \otimes \boldsymbol{b}_2 - \boldsymbol{b}_2 \otimes \boldsymbol{b}_1).$$

Indeed,

$$|\boldsymbol{u}|(\boldsymbol{b}_1\otimes\boldsymbol{b}_2-\boldsymbol{b}_2\otimes\boldsymbol{b}_1)\boldsymbol{u}=|\boldsymbol{u}|((\boldsymbol{b}_2\cdot\boldsymbol{u})\boldsymbol{b}_1-(\boldsymbol{b}_1\cdot\boldsymbol{u})\boldsymbol{b}_2)=0$$

because both \boldsymbol{b}_1 and \boldsymbol{b}_2 are orthogonal to \boldsymbol{u} , and

$$\begin{split} \boldsymbol{u}|^{2}|\boldsymbol{b}_{1}\otimes\boldsymbol{b}_{2}-\boldsymbol{b}_{2}\otimes\boldsymbol{b}_{1}|^{2} &= |\boldsymbol{u}|^{2}\operatorname{tr}((\boldsymbol{b}_{1}\otimes\boldsymbol{b}_{2}-\boldsymbol{b}_{2}\otimes\boldsymbol{b}_{1})^{\top}(\boldsymbol{b}_{1}\otimes\boldsymbol{b}_{2}-\boldsymbol{b}_{2}\otimes\boldsymbol{b}_{1})) = \\ &= |\boldsymbol{u}|^{2}\operatorname{tr}((\boldsymbol{b}_{1}\otimes\boldsymbol{b}_{2})^{\top}(\boldsymbol{b}_{1}\otimes\boldsymbol{b}_{2})-(\boldsymbol{b}_{1}\otimes\boldsymbol{b}_{2})^{\top}(\boldsymbol{b}_{2}\otimes\boldsymbol{b}_{1})-\\ &-(\boldsymbol{b}_{2}\otimes\boldsymbol{b}_{1})^{\top}(\boldsymbol{b}_{1}\otimes\boldsymbol{b}_{2})+(\boldsymbol{b}_{2}\otimes\boldsymbol{b}_{1})^{\top}(\boldsymbol{b}_{2}\otimes\boldsymbol{b}_{1})) = \\ &= |\boldsymbol{u}|^{2}\operatorname{tr}((\boldsymbol{b}_{2}\otimes\boldsymbol{b}_{1})(\boldsymbol{b}_{1}\otimes\boldsymbol{b}_{2})-(\boldsymbol{b}_{2}\otimes\boldsymbol{b}_{1})(\boldsymbol{b}_{2}\otimes\boldsymbol{b}_{1})-\\ &-(\boldsymbol{b}_{1}\otimes\boldsymbol{b}_{2})(\boldsymbol{b}_{1}\otimes\boldsymbol{b}_{2})+(\boldsymbol{b}_{1}\otimes\boldsymbol{b}_{2})(\boldsymbol{b}_{2}\otimes\boldsymbol{b}_{1})-\\ &= |\boldsymbol{u}|^{2}\operatorname{tr}(\boldsymbol{b}_{1}\otimes\boldsymbol{b}_{1}+\boldsymbol{b}_{2}\otimes\boldsymbol{b}_{2}) = 2|\boldsymbol{u}|^{2}. \end{split}$$

Let $\mathbf{P}_{||}(n) := n \otimes n$ be the projection along the direction of n, and let $\mathbf{P}(n) := I - \mathbf{P}_{||}(n) = \mathbf{b}_1 \otimes \mathbf{b}_1 + \mathbf{b}_2 \otimes \mathbf{b}_2$ be the projection onto the plane span $(\mathbf{b}_1, \mathbf{b}_2)$.

$$\begin{split} \mathbf{W}(\boldsymbol{u})^2 &= \mathbf{W}(\boldsymbol{u})\mathbf{W}(\boldsymbol{u}) = |\boldsymbol{u}|^2(\boldsymbol{b}_1 \otimes \boldsymbol{b}_2 - \boldsymbol{b}_2 \otimes \boldsymbol{b}_1)(\boldsymbol{b}_1 \otimes \boldsymbol{b}_2 - \boldsymbol{b}_2 \otimes \boldsymbol{b}_1) \\ &= |\boldsymbol{u}|^2(\boldsymbol{b}_1 \otimes \boldsymbol{b}_2)(\boldsymbol{b}_1 \otimes \boldsymbol{b}_2) - (\boldsymbol{b}_1 \otimes \boldsymbol{b}_2)(\boldsymbol{b}_2 \otimes \boldsymbol{b}_1) - \\ &- (\boldsymbol{b}_2 \otimes \boldsymbol{b}_1)(\boldsymbol{b}_1 \otimes \boldsymbol{b}_2) + (\boldsymbol{b}_2 \otimes \boldsymbol{b}_1)(\boldsymbol{b}_2 \otimes \boldsymbol{b}_1) = \\ &= \frac{|\mathbf{W}(\boldsymbol{u})|^2}{2}(-\boldsymbol{b}_1 \otimes \boldsymbol{b}_1 - \boldsymbol{b}_2 \otimes \boldsymbol{b}_2) = -\frac{|\mathbf{W}(\boldsymbol{u})|^2}{2}\mathbf{P}(\boldsymbol{n}). \end{split}$$

Then

$$egin{aligned} |oldsymbol{u} imesoldsymbol{v}| &= \sqrt{\mathbf{W}(oldsymbol{u})oldsymbol{v}\cdot\mathbf{W}(oldsymbol{u})oldsymbol{v}} = \sqrt{oldsymbol{v}\cdot\mathbf{W}(oldsymbol{u})oldsymbol{v}} &= \sqrt{oldsymbol{v}\cdot\mathbf{W}^2(oldsymbol{u})oldsymbol{v}} = \frac{|oldsymbol{W}(oldsymbol{u})|^2}{\sqrt{2}} \nabla oldsymbol{v}\cdot\mathbf{P}(oldsymbol{n})oldsymbol{v}. \end{aligned}$$

Since $\mathbf{P}(n)\mathbf{v}$ is the projection of \mathbf{v} onto the plane orthogonal to \mathbf{u} , we have

$$oldsymbol{v}\cdot\mathbf{P}(oldsymbol{n})oldsymbol{v}=(\mathbf{P}_{||}(oldsymbol{n})oldsymbol{v}+\mathbf{P}(oldsymbol{n})oldsymbol{v}=\mathbf{P}(oldsymbol{n})oldsymbol{v}\cdot\mathbf{P}(oldsymbol{n})oldsymbol{v}=|\mathbf{P}(oldsymbol{n})oldsymbol{v}|^2,$$

and $|\mathbf{P}(n)v| = |v| \sin \vartheta_{n,v} = |v| \sin \vartheta_{u,v}$. Hence

$$|oldsymbol{u} imes oldsymbol{v}| = rac{|\mathbf{W}(oldsymbol{u})|}{\sqrt{2}} \sqrt{|\mathbf{P}(oldsymbol{n})oldsymbol{v}|^2} = |oldsymbol{u}||oldsymbol{v}| \sinartheta_{oldsymbol{u},oldsymbol{v}}.$$

6

4. Determinant

Definition 4. A skew trilinear form is any map $\alpha: \mathcal{V} \times \mathcal{V} \times \mathcal{V} \to \mathbb{R}$ such that

(1) α is linear in each argument

(2) $\alpha(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) = -\alpha(\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{v}) = -\alpha(\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{u}) = -\alpha(\boldsymbol{v}, \boldsymbol{u}, \boldsymbol{w}) \quad \forall \boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w} \in \mathcal{V}.$

An example of skew trilinear form is the *triple product* (also called *mixed product*):

$$\beta \colon (\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}) \mapsto \boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w}.$$

The linearity property follows immediately from the linearity of both the inner and the exterior products. Moreover we have

$$-\boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w} = (-\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w} = \boldsymbol{v} \times \boldsymbol{u} \cdot \boldsymbol{w}$$
$$= -\sum_{i,j,k=1}^{3} \varepsilon_{ijk} u_j v_k w_i = \sum_{i,j,k=1}^{3} \varepsilon_{kji} u_j v_k w_i = \boldsymbol{u} \times \boldsymbol{w} \cdot \boldsymbol{v}$$
$$= -\sum_{i,j,k=1}^{3} \varepsilon_{ijk} u_j v_k w_i = \sum_{i,j,k=1}^{3} \varepsilon_{jik} u_j v_k w_i = \boldsymbol{w} \times \boldsymbol{v} \cdot \boldsymbol{u}$$

We call \mathcal{P} the prism in \mathbb{R}^3 "described by" u, v, w, that is built in this way:

- take the origin O of \mathbb{R}^3 and the points $P_u := O + u$, $P_v := O + v$ and $P_w := O + w$;
- three edges of \mathcal{P} are the segments $OP_{\boldsymbol{u}}$, $OP_{\boldsymbol{v}}$ and $OP_{\boldsymbol{w}}$;
- the others edges are already completely determined (because \mathcal{P} is a prism).

As we can see in the picture above, the absolute value $|\boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w}|$ of $\boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w}$ is the volume of the prism \mathcal{P} . Indeed:

 $\boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w} = |\boldsymbol{u} \times \boldsymbol{v}| |\boldsymbol{w}| \sin \vartheta_{\boldsymbol{u} \times \boldsymbol{v}, \boldsymbol{w}} = |\boldsymbol{u}| |\boldsymbol{v}| \cos \vartheta_{\boldsymbol{u}, \boldsymbol{v}} |\boldsymbol{w}| \sin \vartheta_{\boldsymbol{u} \times \boldsymbol{v}, \boldsymbol{w}}$

Definition 5. The *determinant* of a tensor \mathbf{L} is the real number det \mathbf{L} such that

 $\alpha(\mathbf{L}\boldsymbol{u},\mathbf{L}\boldsymbol{v},\mathbf{L}\boldsymbol{w}) = \det \mathbf{L}\,\alpha(\boldsymbol{u},\boldsymbol{v},\boldsymbol{w})$

for all vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ and for every skew trilinear form α which is not the null form. It turns out that det $\mathbf{L} = \det[L]$, for any basis \mathcal{B} .

In particular, we can fix any three *linearly independent* vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$ and we can consider their triple product $\boldsymbol{u} \times \boldsymbol{v} \cdot \boldsymbol{w}$. Then, for each tensor **L**:

$$\det \mathbf{L} = rac{\mathbf{L} oldsymbol{u} imes \mathbf{L} oldsymbol{v} \cdot \mathbf{L} oldsymbol{w}}{oldsymbol{u} imes oldsymbol{v} \cdot oldsymbol{w}}$$

A. PEDRINI

In the same way as we did for the prism \mathcal{P} , we call $\mathbf{L}\mathcal{P}$ the prism in \mathbb{R}^3 "described by" $\mathbf{L}u, \mathbf{L}v, \mathbf{L}w$. Geometrically, we have that

- (1) (whenever \mathbf{L} is invertible) the sign of det \mathbf{L} is positive if the orientation of $(\mathbf{L}u, \mathbf{L}v, \mathbf{L}w)$ is the same as the orientation of (u, v, w) and negative otherwise;
- (2) the absolute value of det **L** is the ratio between the volume of the prism $L\mathcal{P}$ and the prism \mathcal{P} :

$$|\det \mathbf{L}| = rac{|\mathbf{L} m{u} imes \mathbf{L} m{v} \cdot \mathbf{L} m{w}|}{|m{u} imes m{v} \cdot m{w}|} = rac{\mathrm{vol}(\mathbf{L}\mathcal{P})}{\mathrm{vol}(\mathcal{P})}.$$

The last property tells us that $|\det \mathbf{L}|$ can be geometrically interpreted as a *volume dilation factor*.

Sometimes it can be useful to take as u, v, w the elements e_1, e_2, e_3 of the basis \mathcal{B} . In this case, the prism \mathcal{P} is a unit cube and its volume $|e_1 \times e_2 \cdot e_3| = e_1 \times e_2 \cdot e_3$ is 1. Then

$$\det \mathbf{L} = \mathbf{L} \boldsymbol{e}_1 \times \mathbf{L} \boldsymbol{e}_2 \cdot \mathbf{L} \boldsymbol{e}_3.$$

(If \mathcal{B} is not positively oriented, then $e_1 \times e_2 \cdot e_3 = -1$ and det $\mathbf{L} = -\mathbf{L}e_1 \times \mathbf{L}e_2 \cdot \mathbf{L}e_3$.)

Moreover, since \mathbf{L}^{-1} maps $\mathbf{L}\mathbf{e}_1, \mathbf{L}\mathbf{e}_2, \mathbf{L}\mathbf{e}_3$ back to, respectively, $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$, we can immediately check that

$$\det \mathbf{L}^{-1} = \frac{\mathbf{L}^{-1}\mathbf{L}\mathbf{e}_1 \times \mathbf{L}^{-1}\mathbf{L}\mathbf{e}_2 \cdot \mathbf{L}^{-1}\mathbf{L}\mathbf{e}_3}{\mathbf{L}\mathbf{e}_1 \times \mathbf{L}\mathbf{e}_2 \cdot \mathbf{L}\mathbf{e}_3} = \frac{\mathbf{e}_1 \times \mathbf{e}_2 \cdot \mathbf{e}_3}{\mathbf{L}\mathbf{e}_1 \times \mathbf{L}\mathbf{e}_2 \cdot \mathbf{L}\mathbf{e}_3} = \frac{1}{\det \mathbf{L}}$$

Example 4. The projection $\mathbf{P}(e_1)$ is not invertible and "squeezes" the unit cube described by e_1, e_2, e_3 into the unit square described by e_2, e_3 : its determinant, indeed, is

$$\det \mathbf{L} = \mathbf{P}(\boldsymbol{e}_1)\boldsymbol{e}_1 \times \mathbf{P}(\boldsymbol{e}_1)\boldsymbol{e}_2 \cdot \mathbf{P}(\boldsymbol{e}_1)\boldsymbol{e}_3 =$$

= $(\boldsymbol{e}_2 \otimes \boldsymbol{e}_2\boldsymbol{e}_1 + \boldsymbol{e}_3 \otimes \boldsymbol{e}_3\boldsymbol{e}_1) \times (\boldsymbol{e}_2 \otimes \boldsymbol{e}_2\boldsymbol{e}_2 + \boldsymbol{e}_3 \otimes \boldsymbol{e}_3\boldsymbol{e}_2) \cdot$
 $\cdot (\boldsymbol{e}_3 \otimes \boldsymbol{e}_3\boldsymbol{e}_3 + \boldsymbol{e}_2 \otimes \boldsymbol{e}_2\boldsymbol{e}_3) =$
= $\mathbf{0} \times \boldsymbol{e}_2 \cdot \boldsymbol{e}_3 = \mathbf{0} \times \boldsymbol{e}_3 = \mathbf{0}.$

Example 5. The tensor L defined in the Example 3 has

$$\det \mathbf{L} = \mathbf{L} \boldsymbol{e}_1 \times \mathbf{L} \boldsymbol{e}_2 \cdot \mathbf{L} \boldsymbol{e}_3 = (2\boldsymbol{e}_1 + 2\boldsymbol{e}_2) \times \left(-\frac{1}{2}\boldsymbol{e}_1 + \boldsymbol{e}_2\right) \cdot \boldsymbol{e}_3 =$$
$$= 3\boldsymbol{e}_3 \cdot \boldsymbol{e}_3 = 3.$$

8

Example 6. We consider the shear tensor $\mathbf{F} := \mathbf{I} + \gamma \mathbf{e}_2 \otimes \mathbf{e}_3$, with $0 < \gamma \in \mathbb{R}$. (A "shear" is a strain in which parallel layers are laterally shifted.) Since $\mathbf{F}\mathbf{e}_1 = \mathbf{e}_1$, $\mathbf{F}\mathbf{e}_2 = \mathbf{e}_2$ and $\mathbf{F}\mathbf{e}_2 = \gamma \mathbf{e}_2 + \mathbf{e}_2$. \mathbf{F} deforms the unit cube in the

Since $\mathbf{F}\mathbf{e}_1 = \mathbf{e}_1$, $\mathbf{F}\mathbf{e}_2 = \mathbf{e}_2$ and $\mathbf{F}\mathbf{e}_3 = \gamma \mathbf{e}_2 + \mathbf{e}_3$, \mathbf{F} deforms the unit cube in the following way:

As we can see from the picture, ${\bf F}$ does not change volumes: indeed, its determinant is

$$\det \mathbf{F} = \mathbf{F} \mathbf{e}_1 \times \mathbf{F} \mathbf{e}_2 \cdot \mathbf{F} \mathbf{e}_3 = \mathbf{e}_1 \times \mathbf{e}_2 \cdot (\gamma \mathbf{e}_2 + \mathbf{e}_3) = \mathbf{e}_3 \cdot (\gamma \mathbf{e}_2 + \mathbf{e}_3) = 1$$

5. Adjugate

Definition 6. The *adjugate* of the invertible tensor \mathbf{L} is the tensor \mathbf{L}^* such that

 $\mathbf{L}^*(\boldsymbol{u} imes \boldsymbol{v}) = \mathbf{L} \boldsymbol{u} imes \mathbf{L} \boldsymbol{v} \qquad \forall \boldsymbol{u}, \boldsymbol{v} \in \mathcal{V}.$

The adjugate can also be written as $\mathbf{L}^* = \det \mathbf{L}(\mathbf{L}^{-1})^\top = (\det \mathbf{L})\mathbf{L}^{-\top} = \det \mathbf{L}(\mathbf{L}^{\top})^{-1}$.

Why? For any vector w we have

$$oldsymbol{u} imes oldsymbol{v} \cdot (\mathbf{L}^*)^\top \mathbf{L} oldsymbol{w} = \mathbf{L}^* (oldsymbol{u} imes oldsymbol{v}) \cdot \mathbf{L} oldsymbol{w} = \mathbf{L} oldsymbol{u} imes \mathbf{L} oldsymbol{v} \cdot \mathbf{L} oldsymbol{w} = \det \mathbf{L} (oldsymbol{u} imes oldsymbol{v} \cdot oldsymbol{w}),$$

whence $(\mathbf{L}^*)^{\top} = \det \mathbf{L} \mathbf{L}^{-1}$ and $\mathbf{L}^* = \det \mathbf{L} (\mathbf{L}^{-1})^{\top}$.

We call $\mathcal{P}a$ the parallelogram "described by" \boldsymbol{u} and \boldsymbol{v} , and $\mathbf{L}\mathcal{P}a$ the parallelogram "described by" $\boldsymbol{L}\boldsymbol{u}$ and $\boldsymbol{L}\boldsymbol{v}$. Then $|\boldsymbol{u} \times \boldsymbol{v}|$ and $|\mathbf{L}\boldsymbol{u} \times \mathbf{L}\boldsymbol{v}|$ are, respectively, the area of $\mathcal{P}a$ and the area of $\mathbf{L}\mathcal{P}a$, and

$$\frac{\operatorname{area}(\mathbf{L}\mathcal{P}a)}{\operatorname{area}(\mathcal{P}a)} = \frac{|\mathbf{L}\boldsymbol{u}\times\mathbf{L}\boldsymbol{v}|}{|\boldsymbol{u}\times\boldsymbol{v}|} = \frac{|\mathbf{L}^*(\boldsymbol{u}\times\boldsymbol{v})|}{|\boldsymbol{u}\times\boldsymbol{v}|} = \left|\mathbf{L}^*\left(\frac{\boldsymbol{u}\times\boldsymbol{v}}{|\boldsymbol{u}\times\boldsymbol{v}|}\right)\right| = |\mathbf{L}^*\boldsymbol{n}|,$$

where $\boldsymbol{n} := \frac{\boldsymbol{u} \times \boldsymbol{v}}{|\boldsymbol{u} \times \boldsymbol{v}|}$ is the normal vector to the parallelogram $\mathcal{P}a$. Hence, the geometric interpretation of the adjugate of \mathbf{L} is that, whenever we take a surface \mathcal{S} and its normal vector \boldsymbol{n} , the value $|\mathbf{L}^*\boldsymbol{n}|$ is the *area dilation factor* of the surfaces parallel to \mathcal{S} .

Example 7. Let $\mathbf{F} := \mathbf{I} + \gamma \boldsymbol{e}_2 \otimes \boldsymbol{e}_3$ be the shear tensor as in the Example 6. The matrices which represents $\mathbf{F}, \mathbf{F}^{-1}$ and \mathbf{F}^* w.r.t. \mathcal{B} are

$$[F] = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & \gamma \\ 0 & 0 & 1 \end{pmatrix} \qquad [F]^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & -\gamma \\ 0 & 0 & 1 \end{pmatrix} \qquad [F]^* = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\gamma & 1 \end{pmatrix}$$

Since $\mathbf{F}^* \mathbf{e}_1 = \mathbf{e}_1$ and $\mathbf{F}^* \mathbf{e}_3 = \mathbf{e}_3$, the tensor \mathbf{F} does not change the areas of the surfaces parallel to either the vertical plane span $(\mathbf{e}_1, \mathbf{e}_2)$ or the horizontal plane

 $\operatorname{span}(e_2, e_3)$. For the surfaces parallel to the vertical plane $\operatorname{span}(e_1, e_3)$, instead, **F** makes the areas increase of a factor

$$|\mathbf{F}^* \boldsymbol{e}_2| = |\boldsymbol{e}_2 - \gamma \boldsymbol{e}_3| = \sqrt{1 + \gamma^2}.$$