FINAL EXAM - ANALYSIS FOR APPLICATIONS
 JANUARY 23RD, 2019

SOLUTIONS

Exercise 1 (3 points). Answer the following questions:
(1) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is continuous on \mathbb{R} but not differentiable at $x_{0}=0$.

$$
f(x)=|x|
$$

(2) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\lim _{x \rightarrow 2} f(x)=1$, but f is not continuous at $x_{0}=2$.

$$
f(x)= \begin{cases}1 & x \neq 2 \\ 0 & x=2\end{cases}
$$

(3) Can you give an example of a function which is differentiable but not continuous? No, because if f is differentiable at x_{0}, then it is continuous at x_{0}.

Exercise 2 (2 points). Find the Taylor polynomial of degree 4 of the function

$$
f(x)=(1+x)^{6}
$$

at the point $x_{0}=0$.
To avoid long computations, it suffices to observe that

$$
(1+x)^{6}=1+6 x+15 x^{2}+20 x^{3}+15 x^{4}+6 x^{5}+x^{6}
$$

Thus the Taylor polynomial is

$$
P_{4}(x)=1+6 x+15 x^{2}+20 x^{3}+15 x^{4}
$$

Exercise 3 (3 points). Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable and that $f\left(x_{0}\right) \neq 0$. Let $g=1 / f$. By applying the definition of derivative, prove that

$$
g^{\prime}\left(x_{0}\right)=-\frac{f^{\prime}\left(x_{0}\right)}{f\left(x_{0}\right)^{2}}
$$

From the definition of derivative, we have

$$
\begin{aligned}
g^{\prime}\left(x_{0}\right) & =\lim _{x \rightarrow x_{0}} \frac{\frac{1}{f(x)}-\frac{1}{f\left(x_{0}\right)}}{x-x_{0}} \\
& =\lim _{x \rightarrow x_{0}} \frac{\frac{\left.f(x)^{\prime}\right)-f(x)}{f(x) f\left(x_{0}\right)}}{x-x_{0}} \\
& =-\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \cdot \lim _{x \rightarrow x_{0}} \frac{1}{f(x) f\left(x_{0}\right)} \\
& =-f^{\prime}\left(x_{0}\right) \cdot \frac{1}{f\left(x_{0}\right) f\left(x_{0}\right)}=-\frac{f^{\prime}\left(x_{0}\right)}{f\left(x_{0}\right)^{2}} .
\end{aligned}
$$

Exercise 4 (3 points). Find the derivative of the functions $f(x)=\tan (x)$ and $g(x)=\arctan (x)$. Provide the details of your reasoning.
(1) $f^{\prime}(x)=1+\tan ^{2}(x)$ because $f(x)=\sin (x) / \cos (x)$ and therefore:

$$
f^{\prime}\left(x_{0}\right)=\frac{\cos (x) \cos (x)+\sin (x) \sin (x)}{\cos ^{2}(x)}=1+\tan (x)^{2}
$$

(2) $g^{\prime}(x)=\frac{1}{1+x^{2}}$ because g is the inverse function of f and therefore, if $y_{0}=f\left(x_{0}\right)=$ $\tan \left(x_{0}\right)$, then:

$$
g^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}=\frac{1}{1+\tan \left(x_{0}\right)^{2}}=\frac{1}{1+y_{0}^{2}}
$$

Exercise 5 (5 points). Let f be the function defined by

$$
f(x)=\frac{x^{2}}{2\left(1-x^{2}\right)}
$$

(1) Write the domain of definition of f.

Since $1-x^{2}=(1+x)(1-x)$, the domain of definition is $\mathbb{R} \backslash\{-1,1\}$.
(2) Find the limits of f at $+\infty$ and $-\infty$.

We have

$$
\lim _{x \rightarrow+\infty} \frac{x^{2}}{2\left(1-x^{2}\right)}=\lim _{x \rightarrow+\infty} \frac{x^{2}}{2 x^{2}\left(\frac{1}{x^{2}}-1\right)}=\lim _{x \rightarrow+\infty} \frac{1}{2\left(\frac{1}{x^{2}}-1\right)}=-\frac{1}{2}
$$

and analogously

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}}{1-x^{2}}=-\frac{1}{2}
$$

(3) Find the intervals on which f is monotone increasing and monotone decreasing.

Let us compute the first derivative:

$$
f^{\prime}(x)=\frac{2 x\left(1-x^{2}\right)-x^{2}(-2 x)}{2\left(1-x^{2}\right)^{2}}=\frac{x}{\left(1-x^{2}\right)^{2}}
$$

Since $\left(1-x^{2}\right)^{2} \geq 0, f^{\prime}(x) \geq 0$ if and only if $x \geq 0$, and $f^{\prime}(x) \leq 0$ if and only if $x \leq 0$. Therefore f is decreasing on $(-\infty,-1) \cup(-1,0)$ and increasing on $(0,1) \cup(1,+\infty)$.
(4) Find the maxima and minima of f.

Since f^{\prime} is changing sing from negative to positive at $x=0, x=0$ is the unique minimum point
(5) Find the intervals on which f is convex and concave.

Let us compute the second derivative:

$$
\begin{aligned}
f^{\prime \prime}(x) & =\frac{\left(1-x^{2}\right)^{2}-x \cdot 2\left(1-x^{2}\right) \cdot(-2 x)}{\left(1-x^{2}\right)^{4}}=\frac{1-2 x^{2}+x^{4}+4 x^{2}-4 x^{4}}{\left(1-x^{2}\right)^{4}} \\
& =\frac{-3 x^{4}+2 x^{2}+1}{\left(1-x^{2}\right)^{4}}=\frac{\left(1-x^{2}\right)\left(3 x^{2}+1\right)}{\left(1-x^{2}\right)^{4}}=\frac{3 x^{2}+1}{\left(1-x^{2}\right)^{3}}
\end{aligned}
$$

Since $3 x^{2}+1>0$, we have $f^{\prime \prime}(x)>0 \Leftrightarrow\left(1-x^{2}\right)^{3}>0 \Leftrightarrow 1-x^{2}>0$, which happens exactly for $x \in(-1,1)$. In conclusion, f is convex in the interval $(-1,1)$, and concave in $(-\infty,-1) \cup(1,+\infty)$.
(6) Sketch a picture of the graph of f.

Exercise 6 (2 points). Find the following limit. Provide the details of your reasoning.

$$
\lim _{x \rightarrow 0} \frac{\ln (x+1)-x}{x^{2}}=-1
$$

because, by Taylor's theorem,

$$
\ln (x+1)=x-x^{2}+O\left(x^{3}\right)
$$

Therefore

$$
\ln (x+1)-x=-x^{2}+O\left(x^{3}\right)
$$

and thus:

$$
\lim _{x \rightarrow 0} \frac{\ln (x+1)-x}{x^{2}}=\lim _{x \rightarrow 0} \frac{-x^{2}+O\left(x^{3}\right)}{x^{2}}=\lim _{x \rightarrow 0}(-1+O(x))=-1 .
$$

Alternatively, use L'Hôpital's rule.

Exercise 7 (2 points). The goal of this exercise is to find approximations of the solution of the equation

$$
x^{2}=3 .
$$

For this purpose, let $f(x)=x^{2}-3$ and consider the equation $f(x)=0$.
(1) Run the first 4 iterates of the algorithm of the Intermediate Value Theorem in the interval $[0,4]$.

The algorithm runs as follows.

- Since $f(0)=-3<0$ and $f(4)=13>0$, take the midpoint $x_{1}=2$.
- Since $f\left(x_{1}\right)=2^{2}-3=1>0$, consider the new interval $[0,2]$ and take its midpoint $x_{2}=1$.
- Since $f\left(x_{2}\right)=1^{2}-3=-2<0$, consider the new interval [1,2] and take its midpoint $x_{3}=3 / 2$.
- Since $f\left(x_{3}\right)=(3 / 2)^{2}-3=-3 / 4<0$, consider the new interval $[3 / 2,2]$ and take its midpoint $x_{3}=7 / 4=1.75$.
(2) Run the first 3 iterates of Newton's method with initial point $x_{0}=3$.

Observe that $f^{\prime}(x)=2 x$. Then the algorithm runs as follows.

- The first step takes

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=3-\frac{6}{6}=3-1=2 .
$$

- The second step takes

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=2-\frac{1}{4}=\frac{7}{4} .
$$

- The third step takes

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=\frac{7}{4}-\frac{\frac{49}{16}-3}{\frac{7}{2}}==\frac{7}{4}-\frac{1}{56}=\frac{97}{56} \approx 1.7321 .
$$

Observe that this is a much better approximation in only three steps, since the exact solution is

$$
\sqrt{3} \approx 1.7320
$$

