FINAL EXAM - ANALYSIS FOR APPLICATIONS
 JANUARY 23RD, 2019

SOLUTIONS

Exercise 1 (3 points). Answer the following questions:
(1) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $\lim _{x \rightarrow 3} f(x)=-1$, but f is not continuous at $x_{0}=3$.

$$
f(x)= \begin{cases}-1 & x \neq 3 \\ 0 & x=3\end{cases}
$$

(2) Give an example of a function $f: \mathbb{R} \rightarrow \mathbb{R}$ which is continuous on \mathbb{R} but not differentiable at $x_{0}=0$.

$$
f(x)=|x|
$$

(3) Can you give an example of a function which is differentiable but not continuous? No, because if f is differentiable at x_{0}, then it is continuous at x_{0}.

Exercise 2 (2 points). Find the Taylor polynomial of degree 3 of the function

$$
f(x)=x \ln (1+x)
$$

at the point $x_{0}=0$.
To avoid long computations, it suffices to observe that the Taylor expansion of $\ln (1+x)$ is

$$
x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3} \ldots
$$

Thus the Taylor polynomial of $\ln (1+x)$ is

$$
P_{3}(x)=x^{2}-\frac{1}{2} x^{3}
$$

Exercise 3 (3 points). Suppose that $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable. Let $g=f^{2}$. By applying the definition of derivative, prove that

$$
g^{\prime}\left(x_{0}\right)=2 f\left(x_{0}\right) f^{\prime}\left(x_{0}\right)
$$

From the definition of derivative, we have

$$
\begin{aligned}
g^{\prime}\left(x_{0}\right) & =\lim _{x \rightarrow x_{0}} \frac{f(x)^{2}-f\left(x_{0}\right)^{2}}{x-x_{0}} \\
& =\lim _{x \rightarrow x_{0}} \frac{\left(f(x)-f\left(x_{0}\right)\right)\left(f(x)+f\left(x_{0}\right)\right)}{x-x_{0}} \\
& =\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \cdot \lim _{x \rightarrow x_{0}}\left(f(x)+f\left(x_{0}\right)\right) \\
& =f^{\prime}\left(x_{0}\right) \cdot\left(f\left(x_{0}\right)+f\left(x_{0}\right)\right)=2 f\left(x_{0}\right) f^{\prime}\left(x_{0}\right) .
\end{aligned}
$$

Exercise 4 (3 points). Find the derivative of the functions $f(x)=\tanh (x)$ and $g(x)=$ $\operatorname{arctanh}(x)$. Provide the details of your reasoning.
(1) $f^{\prime}(x)=1-\tanh ^{2}(x)$ because $f(x)=\sinh (x) / \cosh (x)$ and therefore:

$$
f^{\prime}\left(x_{0}\right)=\frac{\cosh (x) \cosh (x)-\sinh (x) \sinh (x)}{\cosh ^{2}(x)}=1-\tanh (x)^{2} .
$$

(2) $g^{\prime}(x)=\frac{1}{1-x^{2}}$ because g is the inverse function of f and therefore, if $y_{0}=f\left(x_{0}\right)=$ $\tanh \left(x_{0}\right)$, then:

$$
g^{\prime}\left(y_{0}\right)=\frac{1}{f^{\prime}\left(x_{0}\right)}=\frac{1}{1-\tanh \left(x_{0}\right)^{2}}=\frac{1}{1-y_{0}^{2}} .
$$

Exercise 5 (5 points). Let f be the function defined by

$$
f(x)=\frac{x^{2}}{8\left(x^{2}-4\right)}
$$

(1) Write the domain of definition of f.

Since $x^{2}-4=(x+2)(x-2)$, the domain of definition is $\mathbb{R} \backslash\{-2,2\}$.
(2) Find the limits of f at $+\infty$ and $-\infty$.

We have

$$
\lim _{x \rightarrow+\infty} \frac{x^{2}}{8\left(x^{2}-4\right)}=\lim _{x \rightarrow+\infty} \frac{x^{2}}{8 x^{2}\left(1-\frac{4}{x^{2}}\right)}=\lim _{x \rightarrow+\infty} \frac{1}{8\left(1-\frac{4}{x^{2}}\right)}=\frac{1}{8}
$$

and analogously

$$
\lim _{x \rightarrow-\infty} \frac{x^{2}}{8\left(x^{2}-4\right)}=\frac{1}{8}
$$

(3) Find the intervals on which f is monotone increasing and monotone decreasing.

Let us compute the first derivative:

$$
f^{\prime}(x)=\frac{2 x\left(x^{2}-4\right)-x^{2}(2 x)}{8\left(x^{2}-4\right)^{2}}=-\frac{x}{\left(x^{2}-4\right)^{2}} .
$$

Since $\left(x^{2}-4\right)^{2} \geq 0, f^{\prime}(x) \geq 0$ if and only if $x \leq 0$, and $f^{\prime}(x) \leq 0$ if and only if $x \geq 0$. Therefore f is increasing on $(-\infty,-2) \cup(-2,0)$ and decreasing on $(0,2) \cup(2,+\infty)$.
(4) Find the maxima and minima of f.

Since f^{\prime} is changing sing from positive to negative at $x=0, x=0$ is the unique maximum point
(5) Find the intervals on which f is convex and concave.

Let us compute the second derivative:

$$
\begin{aligned}
f^{\prime \prime}(x) & =-\frac{\left(x^{2}-4\right)^{2}-x \cdot 2\left(x^{2}-4\right) \cdot(2 x)}{\left(x^{2}-4\right)^{4}}=-\frac{x^{4}-8 x+16-4 x^{4}+16 x^{2}}{\left(x^{2}-4\right)^{4}} \\
& =\frac{3 x^{4}-8 x^{2}-16}{\left(x^{2}-1\right)^{4}}=\frac{\left(x^{2}-4\right)\left(3 x^{2}+4\right)}{\left(x^{2}-4\right)^{4}}=\frac{3 x^{2}+4}{\left(x^{2}-4\right)^{3}} .
\end{aligned}
$$

Since $3 x^{2}+4>0$, we have $f^{\prime \prime}(x)>0 \Leftrightarrow\left(x^{2}-4\right)^{3}>0 \Leftrightarrow x^{2}-4>0$, which happens exactly for $|x|>2$. In conclusion, f is concave in the interval $(-2,2)$, and convex in $(-\infty,-2) \cup(2,+\infty)$.
(6) Sketch a picture of the graph of f.

Exercise 6 (2 points). Find the following limit. Provide the details of your reasoning.

$$
\lim _{x \rightarrow 0} \frac{2 \cos (x)-2+x^{2}}{x^{4}}=\frac{1}{12}
$$

because, by Taylor's theorem,

$$
\cos (x)=1-\frac{x^{2}}{2}+\frac{x^{4}}{24}+O\left(x^{5}\right) .
$$

Therefore

$$
2 \cos (x)-2+x^{2}=\frac{x^{4}}{12}+O\left(x^{5}\right)
$$

and thus:

$$
\lim _{x \rightarrow 0} \frac{2 \cos (x)-2+x^{2}}{x^{4}}=\lim _{x \rightarrow 0} \frac{\frac{x^{4}}{12}+O\left(x^{5}\right)}{x^{4}}=\lim _{x \rightarrow 0}\left(\frac{1}{12}+O(x)\right)=\frac{1}{12} .
$$

Alternatively, use L'Hôpital's rule.

Exercise 7 (2 points). The goal of this exercise is to find approximations of the solution of the equation

$$
x^{2}=3
$$

For this purpose, let $f(x)=x^{2}-3$ and consider the equation $f(x)=0$.
(1) Run the first 4 iterates of the algorithm of the Intermediate Value Theorem in the interval $[0,4]$.

The algorithm runs as follows.

- Since $f(0)=-3<0$ and $f(4)=13>0$, take the midpoint $x_{1}=2$.
- Since $f\left(x_{1}\right)=2^{2}-3=1>0$, consider the new interval $[0,2]$ and take its midpoint $x_{2}=1$.
- Since $f\left(x_{2}\right)=1^{2}-3=-2<0$, consider the new interval $[1,2]$ and take its midpoint $x_{3}=3 / 2$.
- Since $f\left(x_{3}\right)=(3 / 2)^{2}-3=-3 / 4<0$, consider the new interval $[3 / 2,2]$ and take its midpoint $x_{3}=7 / 4=1.75$.
(2) Run the first 3 iterates of Newton's method with initial point $x_{0}=3$.

Observe that $f^{\prime}(x)=2 x$. Then the algorithm runs as follows.

- The first step takes

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=3-\frac{6}{6}=3-1=2 .
$$

- The second step takes

$$
x_{2}=x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)}=2-\frac{1}{4}=\frac{7}{4} .
$$

- The third step takes

$$
x_{3}=x_{2}-\frac{f\left(x_{2}\right)}{f^{\prime}\left(x_{2}\right)}=\frac{7}{4}-\frac{\frac{49}{16}-3}{\frac{7}{2}}==\frac{7}{4}-\frac{1}{56}=\frac{97}{56} \approx 1.7321 .
$$

Observe that this is a much better approximation in only three steps, since the exact solution is

$$
\sqrt{3} \approx 1.7320
$$

