EXERCISE SHEET 10

WRITTEN SOLUTIONS OF EXERCISES 1.6 AND 1.12 TO BE PRESENTED ON 11/12

Exercise 1. For each of the following functions f, determine the intervals on which f is convex and concave. Sketch a picture of the graph of f, by studying appropriately the domain of definition of f, the limits of f, and the intervals of monotonicity.

(1)	$f(x) = x^2 - 6x + 5.$	(12)	$f(x) = \frac{x-1}{x+1}.$
(2)	$f(x) = -2x^2 + 4x - 7.$	(12)	$f(x) = \frac{3x^2}{3x^2}$
(3)	$f(x) = 2x^2 + x - 6.$	(15)	$J(x) = \frac{1-x}{1-x}.$
(4)	$f(x) = x^3 - 9x^2 + 1.$	(14)	$f(x) = \frac{2x}{1+x^2}.$
(5)	$f(x) = x^4 - 2x^3 - 7.$	(15)	$f(x) = \frac{x^2 + 1}{x^2 + 1}$
(6)	$f(x) = x^4 - x^5.$	(13)	$f(x) = \frac{1}{x^2 - 1}$
(7)	$f(x) = x^4 + 2x^3 + 6x^2.$	(16)	$f(x) = \frac{2x}{\sqrt{x^2 + 1}}.$
(8)	$f(x) = x + \frac{1}{x}.$	(17)	$f(x) = \sqrt{1 - x}.$
(9)	$f(x) = \sinh(x).$	(18)	$f(x) = xe^{-x}.$
(10)	$f(x) = \cosh(x).$	(19)	$f(x) = \ln(x-1).$
(11)	$f(x) = \tanh(x).$	(20)	$f(x) = e^{-x^2}.$

Exercise 2. The goal of this exercise is to prove Lagrange's theorem, based on Rolle's theorem. Recall that Rolle's theorem says that if $g : I \to \mathbb{R}$ is differentiable and g(a) = g(b) for $a < b, a, b \in I$, then there exists a point $y \in (a, b)$ such that g'(y) = 0

- (1) Given a differentiable function $f : I \to \mathbb{R}$, write the equation of the unique line $\ell : \mathbb{R} \to \mathbb{R}$ which passes through the points (a, f(a)) and (b, f(b)).
- (2) Let $g = f \ell$. Check that g(a) = g(b) = 0.
- (3) Apply Rolle's theorem to *g* to show that there exists $y \in (a, b)$ such that $f'(y) = \ell'(y)$.
- (4) Conclude that

$$f'(y) = \frac{f(b) - f(a)}{b - a}$$
.