EXERCISE SHEET 12

Exercise 1. Use Taylor approximations to compute the following limits:
(1) $\lim _{x \rightarrow 0} \frac{e^{x}-1}{x}$
(2) $\lim _{x \rightarrow 0} \frac{e^{x}-1-x}{x^{2}}$
(3) $\lim _{x \rightarrow 0} \frac{\sinh (x)}{x}$
(4) $\lim _{x \rightarrow 0} \frac{\cosh (x)-1}{x^{2}}$
(5) $\lim _{x \rightarrow 0} \frac{\tan (x)-x}{x^{3}}$
(6) $\lim _{x \rightarrow 0} \frac{x-\arctan (x)}{x^{3}}$
(7) $\lim _{x \rightarrow 0} \frac{\sin (x)-\arctan (x)}{x^{3}}$
(8) $\lim _{x \rightarrow 0} \frac{\ln \left(1+x^{3}\right)}{x^{3}}$
(9) $\lim _{x \rightarrow 0} \frac{(2-2 \cos (x))^{3}}{x^{6}}$

Exercise 2. Compute the first three values obtained by Newton's method to find a zero of the following functions, with initial point x_{0}. Compare the obtained value with a solution that you may find by another method.
(1) $f(x)=x^{2}-2 \quad x_{0}=2$;
(2) $f(x)=\cos (x) \quad x_{0}=2$;
(3) $f(x)=x^{2}+x-1 \quad x_{0}=0$;
(4) $f(x)=x^{2}+x-1 \quad x_{0}=2$;
(5) $f(x)=\tan (x)-1 \quad x_{0}=0$;
(6) $f(x)=\tan (x)-1 \quad x_{0}=1$.

