EXERCISE SHEET 12

Exercise 1. Use Taylor approximations to compute the following limits:

(1)
$$\lim_{x \to 0} \frac{e^x - 1}{x}$$

(2)
$$\lim_{x \to 0} \frac{e^x - 1 - x}{x^2}$$

(3)
$$\lim_{x \to 0} \frac{\sinh(x)}{x}$$

(4)
$$\lim_{x \to 0} \frac{\cosh(x) - 1}{x^2}$$

(5)
$$\lim_{x \to 0} \frac{\tan(x) - x}{x^3}$$

(6)
$$\lim_{x \to 0} \frac{x - \arctan(x)}{x^3}$$

(7)
$$\lim_{x \to 0} \frac{\sin(x) - \arctan(x)}{x^3}$$

(8)
$$\lim_{x \to 0} \frac{\ln(1 + x^3)}{x^3}$$

(9)
$$\lim_{x \to 0} \frac{(2 - 2\cos(x))^3}{x^6}$$

Exercise 2. Compute the first three values obtained by Newton's method to find a zero of the following functions, with initial point x_0 . Compare the obtained value with a solution that you may find by another method.

- (1) $f(x) = x^2 2$ $x_0 = 2;$ (2) $f(x) = \cos(x)$ $x_0 = 2;$
- (3) $f(x) = x^2 + x 1$ $x_0 = 0;$
- (4) $f(x) = x^2 + x 1$ $x_0 = 2;$
- (5) $f(x) = \tan(x) 1$ $x_0 = 0;$
- (6) $f(x) = \tan(x) 1$ $x_0 = 1$.