EXERCISE SHEET 2

Exercise 1. Recall that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is monotone increasing if, for every $x_{1}, x_{2} \in \mathbb{R}$, if $x_{1}<x_{2}$, then $f\left(x_{1}\right) \leq f\left(x_{2}\right)$. The goal of this exercise is to show that the exponential function is monotone increasing. For this purpose, proceed by the following steps:
(1) Show that, if $x>0$, then $e^{x}>1$.
(2) Show that, if $x<0$, then $e^{x}<1$. Hint: you can use that $e^{-x}=1 / e^{x}$.
(3) Show that, if $x_{1}<0<x_{2}$, then $e^{x_{1}}<e^{x_{2}}$.
(4) Show that, if $0<x_{1}<x_{2}$, then $e^{x_{1}}<e^{x_{2}}$. Hint: write $x_{2}=x_{1}+\left(x_{2}-x_{1}\right)$, use that $e^{x+y}=e^{x} e^{y}$ and use the first point.
(5) Show that, if $x_{1}<x_{2}<0$, then $e^{x_{1}}<e^{x_{2}}$.
(6) Deduce from the previous points that the exponential is monotone increasing. Hint: divide the proof in different cases, according to the sign of x_{1} and x_{2}.

Exercise 2. Recall that the hyperbolic trigonometric functions are defined by:

$$
\cosh (x)=\frac{e^{x}+e^{-x}}{2} \quad \sinh (x)=\frac{e^{x}-e^{-x}}{2}
$$

(1) Show that $\cosh (-x)=\cosh (x)$ and $\sinh (-x)=-\sinh (x)$.
(2) Show that $\cosh ^{2}(x)-\sinh ^{2}(x)=1$.
(3) Show directly the identities:

$$
\sinh (x+y)=\cosh (x) \sinh (y)+\sinh (x) \cosh (y)
$$

and

$$
\cosh (x+y)=\cosh (x) \cosh (y)+\sinh (x) \sinh (y) .
$$

(4) Show that

$$
\lim _{x \rightarrow+\infty} \cosh (x)=+\infty \quad \text { and } \quad \lim _{x \rightarrow+\infty} \sinh (x)=+\infty .
$$

Hint: for the first limit, show and use that $\cosh (x)>e^{x} / 2$; for the second limit, use the identity $\cosh ^{2}(x)-\sinh ^{2}(x)=1$.

Exercise 3. Recall that a function $f: \mathbb{R} \rightarrow \mathbb{R}$ is even if $f(-x)=f(x)$ for every x, while f is odd if $f(-x)=-f(x)$ for every x. Determine whether the following functions are even or odd:
(1) $f(x)=x^{3}$;
(2) $f(x)=x^{4}$;
(3) $f(x)=x^{n}$ for n even;
(4) $f(x)=x^{n}$ for n odd;
(5) $f(x)=e^{x}$;
(6) $f(x)=1$;
(7) $f(x)=0$;
(8) $f(x)=\sin (x)$;
(9) $f(x)=\cos (x)$;
(10) $f(x)=\sinh (x)$;
(11) $f(x)=\cosh (x)$;

Exercise 4. Prove the following properties:
(1) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is an odd function, then $f(0)=0$.
(2) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is both odd and even, then $f(x)=0$ for every x.
(3) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is even, then

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow-\infty} f(x) .
$$

(4) If $f: \mathbb{R} \rightarrow \mathbb{R}$ is odd, then

$$
\lim _{x \rightarrow+\infty} f(x)=-\lim _{x \rightarrow-\infty} f(x)
$$

Exercise 5. Show that

$$
\lim _{x \rightarrow-\infty} x^{n}= \begin{cases}+\infty & \text { if } n \geq 1 \text { and } n \text { is even } \\ -\infty & \text { if } n \geq 1 \text { and } n \text { is odd } \\ 1 & \text { if } n=0 \\ 0 & \text { if } n \leq 0\end{cases}
$$

Hint: use the previous exercises and the limits of x^{n} at $+\infty$ seen in class.

