EXERCISE SHEET 2

Exercise 1. Recall that a function $f : \mathbb{R} \to \mathbb{R}$ is *monotone increasing* if, for every $x_1, x_2 \in \mathbb{R}$, if $x_1 < x_2$, then $f(x_1) \leq f(x_2)$. The goal of this exercise is to show that the exponential function is monotone increasing. For this purpose, proceed by the following steps:

- (1) Show that, if x > 0, then $e^x > 1$.
- (2) Show that, if x < 0, then $e^x < 1$. *Hint: you can use that* $e^{-x} = 1/e^x$.
- (3) Show that, if $x_1 < 0 < x_2$, then $e^{x_1} < e^{x_2}$.
- (4) Show that, if $0 < x_1 < x_2$, then $e^{x_1} < e^{x_2}$. *Hint: write* $x_2 = x_1 + (x_2 x_1)$, use that $e^{x+y} = e^x e^y$ and use the first point.
- (5) Show that, if $x_1 < x_2 < 0$, then $e^{x_1} < e^{x_2}$.
- (6) Deduce from the previous points that the exponential is monotone increasing. *Hint: divide the proof in different cases, according to the sign of* x₁ *and* x₂.

Exercise 2. Recall that the *hyperbolic trigonometric functions* are defined by:

$$\cosh(x) = \frac{e^x + e^{-x}}{2}$$
 $\sinh(x) = \frac{e^x - e^{-x}}{2}$.

- (1) Show that $\cosh(-x) = \cosh(x)$ and $\sinh(-x) = -\sinh(x)$.
- (2) Show that $\cosh^2(x) \sinh^2(x) = 1$.
- (3) Show directly the identities:

$$\sinh(x+y) = \cosh(x)\sinh(y) + \sinh(x)\cosh(y)$$

and

$$\cosh(x+y) = \cosh(x)\cosh(y) + \sinh(x)\sinh(y) \,.$$

(4) Show that

$$\lim_{x \to \infty} \cosh(x) = +\infty$$
 and $\lim_{x \to \infty} \sinh(x) = +\infty$

Hint: for the first limit, show and use that $\cosh(x) > e^x/2$; *for the second limit, use the identity* $\cosh^2(x) - \sinh^2(x) = 1$.

Exercise 3. Recall that a function $f : \mathbb{R} \to \mathbb{R}$ is *even* if f(-x) = f(x) for every x, while f is *odd* if f(-x) = -f(x) for every x. Determine whether the following functions are even or odd:

1

(1) $f(x) = x^3$; (2) $f(x) = x^4$; (3) $f(x) = x^n$ for *n* even; (4) $f(x) = x^n$ for *n* odd; (5) $f(x) = e^x$; (6) f(x) = 1; (7) f(x) = 0; (8) $f(x) = \sin(x)$; (9) $f(x) = \cos(x)$; (10) $f(x) = \sinh(x)$; (11) $f(x) = \cosh(x)$; **Exercise 4.** Prove the following properties:

- (1) If $f : \mathbb{R} \to \mathbb{R}$ is an odd function, then f(0) = 0.
- (2) If $f : \mathbb{R} \to \mathbb{R}$ is both odd and even, then f(x) = 0 for every x.
- (3) If $f : \mathbb{R} \to \mathbb{R}$ is even, then

$$\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) \; .$$

(4) If $f : \mathbb{R} \to \mathbb{R}$ is odd, then

$$\lim_{x \to +\infty} f(x) = -\lim_{x \to -\infty} f(x) \; .$$

Exercise 5. Show that

$$\lim_{x \to -\infty} x^n = \begin{cases} +\infty & \text{if } n \ge 1 \text{ and } n \text{ is even,} \\ -\infty & \text{if } n \ge 1 \text{ and } n \text{ is odd,} \\ 1 & \text{if } n = 0, \\ 0 & \text{if } n \le 0. \end{cases}$$

Hint: use the previous exercises and the limits of x^n *at* $+\infty$ *seen in class.*

2