EXERCISE SHEET 3

WRITTEN SOLUTIONS OF EXERCISES 1.2, 2.2 AND 3.2 TO BE PRESENTED ON 16/10

Exercise 1. Give the following definitions of limits of a function $f : \mathbb{R} \to \mathbb{R}$:

(1)
$$\lim_{x \to +\infty} f(x) = -\infty;$$

(2)
$$\lim_{x \to -\infty} f(x) = \ell \in \mathbb{R};$$

(3)
$$\lim_{x \to x_0} f(x) = \ell \in \mathbb{R};$$

(4)
$$\lim_{x \to x_0^+} f(x) = +\infty;$$

(5)
$$\lim_{x \to x_0^-} f(x) = +\infty;$$

(6)
$$\lim_{x \to x_0^+} f(x) = \ell \in \mathbb{R};$$

(7)
$$\lim_{x \to x_0^-} f(x) = -\infty.$$

Exercise 2. By applying the definition, prove the following limits:

(1)
$$\lim_{x \to -\infty} \frac{1}{x} = 0;$$

$$(2) \lim_{x \to +\infty} \frac{1}{\sqrt{x}} = 0;$$

(3)
$$\lim_{x\to 0^+} \frac{1}{x} = +\infty;$$

(4)
$$\lim_{x\to 0} \frac{1}{x^2} = +\infty;$$

Exercise 3. Determine if the following limits exist and, if they exist, compute the value of the limit.

1

$$(1) \lim_{x \to +\infty} \left(1 + \frac{1}{x}\right);$$

$$(2) \lim_{x \to +\infty} \left(\frac{1}{x} - \frac{1}{2x} \right);$$

(3)
$$\lim_{x\to 0} f(x)$$
 where $f(x)=\begin{cases} 1 & \text{if } x=1/n \text{ for } n\in \mathbb{N} \\ 0 & \text{otherwise} \end{cases}$;

(4)
$$\lim_{x\to 0} f(x)$$
 where $f(x)=\begin{cases} 1/n^2 & \text{if } x=1/n \text{ for } n\in\mathbb{N}\\ 0 & \text{otherwise} \end{cases}$;