EXERCISE SHEET 6

WRITTEN SOLUTIONS OF EXERCISES 2.2 AND 3.3 TO BE PRESENTED ON 14/11

Exercise 1. By applying only the definition of derivative, show that for any $a \in \mathbb{R}$ and for any function $f : I \to \mathbb{R}$ differentiable at $x_0 \in \mathbb{R}$,

$$(af)'(x_0) = af'(x_0)$$
.

Exercise 2. Show the following equalities for the derivatives of the hyperbolic trigonometric functions. Unless otherwise specified, you are allowed to apply all the formulae we have seen in class.

- (1) Show that $(\cosh(x))' = \sinh(x)$. (*Hint: apply the definition of hyperbolic sine and cosine*)
- (2) Show that $(\sinh(x))' = \cosh(x)$.
- (3) Show that $(\cosh^2(x))' = 2\cosh(x)\sinh(x)$.
- (4) Show that $(\sinh^2(x))' = 2\cosh(x)\sinh(x)$.
- (5) Show that $(\cosh^2(x) \sinh^2(x))' = 0$, by applying the previous two points. Is this surprising?
- (6) Show that $(\cosh(2x))' = 2\sinh(2x)$ and that $(\sinh(2x))' = 2\cosh(2x)$ by using the rule of the derivative of the composition.
- (7) Now show again that $(\cosh(2x))' = 2\sinh(2x)$ and that $(\sinh(2x))' = 2\cosh(2x)$, but using the identities $\cosh(2x) = \cosh^2(x) + \sinh^2(x)$ and $\sinh(2x) = 2\sinh(x)\cosh(x)$ and the Leibnitz rule.
- (8) Show that $(\tanh(x))' = 1 \tanh^2(x) = \frac{1}{\cosh^2(x)}$.

Exercise 3. Compute the derivatives of the following functions, on their domain of definition:

(1)
$$f(x) = \frac{1}{x+1}$$

(2) $f(x) = \frac{x^2}{x-1}$
(3) $f(x) = \cos(x^2)$
(4) $f(x) = e^{x^2}$
(5) $f(x) = \frac{(x+1)^2}{x-1}$
(6) $f(x) = x^3$
(7) $f(x) = \frac{1}{1+e^{-x}}$
(8) $f(x) = e^{e^x}$
(9) $f(x) = \cos(x+2\pi)$
(10) $f(x) = \cos(x+2\pi)$
(11) $f(x) = \frac{\cos(x)}{\sin(x)}$
(12) $f(x) = \sin(e^{2x+1})$
(13) $f(x) = \tan(2x+1)$
(14) $f(x) = \tanh(x^3)$
(15) $f(x) = (\tanh(x))^3$