EXERCISE SHEET 7

WRITTEN SOLUTIONS OF EXERCISES 1.4 AND 2.5 TO BE PRESENTED ON 20/11

Exercise 1. Apply the rule for the derivative of the inverse function in order to show that:

(1)
$$(\operatorname{arcsinh}(y))' = \frac{1}{\sqrt{1+y^2}}$$
.
(3) $(\operatorname{arctanh}(y))' = \frac{1}{1-y^2}$.
(2) $(\operatorname{arccosh}(y))' = \frac{1}{\sqrt{y^2-1}}$.
(3) $(\operatorname{arctanh}(y))' = \frac{1}{1-y^2}$.

Exercise 2. The objective of this exercise is to compute again the derivative of point (2) of the previous exercise, but by a different method.

- (1) Show that the equation x + 1/x = 2y, where x is the variable and y is fixed, has:
 - No solution if y < 1;
 - One solution if y = 1, namely x = 1;
 - Two solutions if y > 1, given by $x = y \pm \sqrt{y^2 1}$.
- (2) Deduce that the equation $\cosh(t) = y$ has
 - One solution if y = 1, namely t = 0;
 - Two solutions if y > 1, given by $t = \log(y \pm \sqrt{y^2 1})$.
 - (*Hint:* put $x = e^t$ and use the previous point.)
- (3) Deduce that the function $f : \mathbb{R} \to \mathbb{R}$ given by $f(t) = \cosh(t)$ is neither injective nor surjective.
- (4) Deduce that the function $f : [0, +\infty) \to [1, +\infty)$ given by $f(t) = \cosh(t)$ is bijective, with inverse

$$f^{-1}(y) = \log(y + \sqrt{y^2 - 1})$$
.

(5) Show that

$$(f^{-1})'(y) = \frac{1}{\sqrt{y^2 - 1}}$$

by differentiating the expression of the previous point.

Exercise 3. Compute the derivatives of the following functions, on their domain of definition:

(1) $f(x) = 4\log(x) + 5x^3$ (6) $f(x) = \arctan(1 + e^{2x})$ (2) $f(x) = \log(\sin(x))$ (7) $f(x) = 4e^x \arcsin(x)$ (3) $f(x) = \sqrt{x^2}$ (8) $f(x) = \arccos(x^3 + x)$ (4) $f(x) = (\sqrt{x})^2$ (9) $f(x) = \log(1 + 3e^{2x})$ (5) $f(x) = \sqrt{3x^2 + 2x - 7}$ (10) $f(x) = \log(\log(\log(x)))$

Exercise 4. Using the definition of the power function, namely $x^{\alpha} := e^{\alpha \log(x)}$, show the following properties, for every $\alpha \in \mathbb{R}$:

(1) $\log(x^{\alpha}) = \alpha \log(x)$ (2) $x^{\alpha+\beta} = x^{\alpha}x^{\beta};$ (3) $(x^{\alpha})^{\beta} = x^{\alpha\beta}.$