EXERCISE SHEET 7

WRITTEN SOLUTIONS OF EXERCISES 1.4 AND 2.5 TO BE PRESENTED ON 20/11

Exercise 1. Apply the rule for the derivative of the inverse function in order to show that:
(1) $(\operatorname{arcsinh}(y))^{\prime}=\frac{1}{\sqrt{1+y^{2}}}$.
(3) $(\operatorname{arctanh}(y))^{\prime}=\frac{1}{1-y^{2}}$.
(2) $(\operatorname{arccosh}(y))^{\prime}=\frac{1}{\sqrt{y^{2}-1}}$.
(4) $(\sqrt[3]{y})^{\prime}=\frac{1}{3 \sqrt[3]{y^{2}}}$.

Exercise 2. The objective of this exercise is to compute again the derivative of point (2) of the previous exercise, but by a different method.
(1) Show that the equation $x+1 / x=2 y$, where x is the variable and y is fixed, has:

- No solution if $y<1$;
- One solution if $y=1$, namely $x=1$;
- Two solutions if $y>1$, given by $x=y \pm \sqrt{y^{2}-1}$.
(2) Deduce that the equation $\cosh (t)=y$ has
- One solution if $y=1$, namely $t=0$;
- Two solutions if $y>1$, given by $t=\log \left(y \pm \sqrt{y^{2}-1}\right)$.
(Hint: put $x=e^{t}$ and use the previous point.)
(3) Deduce that the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by $f(t)=\cosh (t)$ is neither injective nor surjective.
(4) Deduce that the function $f:[0,+\infty) \rightarrow[1,+\infty)$ given by $f(t)=\cosh (t)$ is bijective, with inverse

$$
f^{-1}(y)=\log \left(y+\sqrt{y^{2}-1}\right) .
$$

(5) Show that

$$
\left(f^{-1}\right)^{\prime}(y)=\frac{1}{\sqrt{y^{2}-1}}
$$

by differentiating the expression of the previous point.
Exercise 3. Compute the derivatives of the following functions, on their domain of definition:
(1) $f(x)=4 \log (x)+5 x^{3}$
(6) $f(x)=\arctan \left(1+e^{2 x}\right)$
(2) $f(x)=\log (\sin (x))$
(7) $f(x)=4 e^{x} \arcsin (x)$
(3) $f(x)=\sqrt{x^{2}}$
(8) $f(x)=\arccos \left(x^{3}+x\right)$
(4) $f(x)=(\sqrt{x})^{2}$
(9) $f(x)=\log \left(1+3 e^{2 x}\right)$
(5) $f(x)=\sqrt{3 x^{2}+2 x-7}$
(10) $f(x)=\log (\log (\log (x)))$

Exercise 4. Using the definition of the power function, namely $x^{\alpha}:=e^{\alpha \log (x)}$, show the following properties, for every $\alpha \in \mathbb{R}$:
(1) $\log \left(x^{\alpha}\right)=\alpha \log (x)$
(2) $x^{\alpha+\beta}=x^{\alpha} x^{\beta}$;
(3) $\left(x^{\alpha}\right)^{\beta}=x^{\alpha \beta}$.

