## EXERCISE SHEET 9

Exercise 1. For each of the following functions $f$, determine the intervals on which $f$ is monotone increasing, monotone decreasing, the local minima and the local maxima of $f$. Sketch a picture of the graph of $f$. (Hint: do not forget to consider the domain of definition and the limits of $f$ ).
(1) $f(x)=6 x+2$.
(2) $f(x)=-x^{2}+x$.
(3) $f(x)=2 x^{2}+x-6$.
(4) $f(x)=4 x^{3}+3 x^{2}-6 x+2$.
(5) $f(x)=1-12 x-9 x^{2}-2 x^{3}$.
(6) $f(x)=3-2 x^{2}+4 x^{4}$.
(7) $f(x)=\frac{2 x}{x^{2}+1}$.
(8) $f(x)=\sinh (x)$.
(9) $f(x)=\cosh (x)$.
(10) $f(x)=\frac{1}{\cosh (x)}$.
(11) $f(x)=\tanh (x)$.
(12) $f(x)=\frac{x-1}{x^{2}}$.
(13) $f(x)=\frac{x^{2}}{2-x}$.
(14) $f(x)=\frac{3 x+2}{1-x^{2}}$.
(15) $f(x)=\frac{x^{3}}{x+1}$.
(16) $f(x)=\sqrt{1-x}$.
(17) $f(x)=x+e^{-x}$.
(18) $f(x)=\ln (1-x)$.
(19) $f(x)=\ln \left(x^{2}-4\right)$.
(20) $f(x)=x \ln (x)$.

Exercise 2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be any function, and let $g(x)=e^{f(x)}$.
(1) Supposing that $f$ is differentiable, show that for every $x \in \mathbb{R}, f^{\prime}(x)>0$ if and only if $g^{\prime}(x)>0$.
(2) Show that $f$ and $g$ have the same local minima and maxima.
(3) Now show, applying the definition of monotonicity, that $f$ is monotone increasing if and only if $g$ is monotone increasing. (Warning: we are not supposing that $f$ is differentiable.)
(4) Finally, show that for every $f$ and $g$ monotone increasing, $f \circ g$ is monotone increasing.

Exercise 3. Show that, if $f: I \rightarrow \mathbb{R}$ is a monotone decreasing function, then $f^{\prime} \leq 0$. Find a function $f$ which is strictly decreasing but $f^{\prime}$ is not strictly negative.

