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Mémoire d’habilitation à diriger des recherches
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que j’ai eu le plaisir de rencontrer régulièrement dans notre équipe de Géométrie et Topolo-
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Je remercie également les membres des équipes administratives et informatiques, pour

la gentillesse, bienveillance et patience avec lesquelles ils m’ont toujours aidé et soutenu
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ce mémoire, ainsi que mes étudiants, Dip, Enrico et Farid. Chaque collaboration est un
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Didier, Patrick and Daniel.

I would like to thank my co-authors: Andrea, Ben, Christian, Filippo, Francesco,
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main, Didier, Patrick e Daniel.

Desidero ringraziare i miei coautori: Andrea, Ben, Christian, Filippo, Francesco,
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Introduction

It has been for me a challenging exercise to look back at the research that I have developed

since obtention of my PhD in 2015, to “connect the dots”, and to describe the trajectory

that my interests, my work, and my theorems, have followed since them. The answer that

I have found is that there have been two main leitmotive: one is the study of geometric

structures, or (G,X)-structures, on manifolds, mostly of low dimensions; the second —

this time with the exception of two “digressions” of a more topological flavour, which I

will discuss later — is the theory of submanifolds, and in particular the investigation of

so-called asymptotic Plateau problems. This introduction mostly tries to describe how the

latter, namely the study of submanifolds with special properties (hence with a differen-

tial geometric spirit) can have very interesting applications, in various directions, for the

former, namely for geometric structures (typically a subject largely studied in geometric

topology). Then, at the end of the introduction, I will say a few more words on the afore-

mentioned “digressions”, that is, some results that I have obtained in a more topological,

instead of analytical, spirit.

(G,X)-structures

As said, the first leitmotiv of this memoir is the notion of geometric structure on manifolds,

which dates back to Felix Klein’s Erlangen program from 1872. Klein, inspired by the

pioneering work of Sophus Lie and himself on continuous groups of symmetries, promoted

the idea that a geometry is essentially determined by the group of symmetries which

act on that geometric space. More precisely, the geometric objects or quantities which

can be considered well-defined in a certain ambient space, such as lengths and angles in

Euclidean space or in hyperbolic space, are those which are preserved by the corresponding

symmetries (the isometries for Euclidean and hyperbolic space, in the examples).

This concept has been modernised and formalised in the setting of (G,X)-structures

by the work of many mathematicians, among whom the most prominent are Charles

Ehresmann and William Thurston. The work of Ehresmann in the 1930s led to the modern

definition of (G,X)-structure on a manifold M , which is the data of an atlas for M where

the charts take values in the model manifold X and the transition functions are restrictions

of transformations in the Lie group G acting on X.
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2 Introduction

From the 1970s, Thurston gave new life to this subject and phrased his famous Ge-

ometrization Program in the language of (G,X)-structures — by studying the so-called

eight three-dimensional geometries, namely H3, R3, S3, H2×R, S2×R, Nil, Sol and S̃L2 —

which eventually led, among many spectacular achievements, to the proof of the Poincaré

Conjecture. Among those geometries, a fundamental role in his program has been played

by hyperbolic three-manifolds, namely manifolds endowed with a (Isom(H3),H3)-structure

(i.e. a hyperbolic structure). Quoting Thurston [Thu82], among three-manifolds, those

are “by far the most interesting, the most complex, and the most useful”.

In recent years, there has been a constantly growing interest in other types of geo-

metric structures, that leave the Riemannian setting. This memoir is organized in three

parts, corresponding to different types of geometric structures. Part I will focus on (some

of) the three-dimensional Thurston’s geometries, starting from hyperbolic geometry, in-

cluding Euclidean geometry and, in the first topological “interlude”, spherical and S2 × R
geometries. Part II will focus on pseudo-Riemannian geometries of mixed signature and of

constant sectional curvature, more precisely: for negative sectional curvature, the study of

Anti-de Sitter geometry and, more generally, pseudo-hyperbolic geometry of any signature

(p, q) (Anti-de Sitter being the Lorentzian case, corresponding to q = 1), and, for van-

ishing sectional curvature, of Minkowski geometry. Part III will treat certain geometric

structures that even leave the pseudo-Riemannian world. These include real projective

structures, that can be seen as generalizations of hyperbolic structures and represent also

the right setting for the second topological “interlude” about geometric transitions, and

equi-affine structures, that instead generalize both Euclidean and Minkowski geometry.

I have been tempted to call some of these (non-Riemannian) geometric structures

“exotic”, borrowing the name from a workshop that was held at ICERM in 2013 and had

been very influential for my research. But I believe that these “exotic” structures have

drawn a lot of interest from the geometric topology community during the past 10 years,

and important progress is still on-going, thus making them become much less “exotic” than

they were at that time.

(Generalized) asymptotic Plateau problems

Let us now turn our attention to the second leitmotiv, namely, as said above, the study

of asymptotic Plateau problems and their generalizations. To provide some context, the

classical Plateau problem asks whether there exists a minimal surface (i.e. having vanish-

ing mean curvature) in the Euclidean three-space whose boundary is a prescribed simple

closed curve. This question was first asked by Joseph Lagrange in 1760, and was solved

independently by Jesse Douglas and Tibor Radó in the 1930s. Clearly the question can be

asked for a (pseudo-)Riemannian manifold M instead of the Euclidean space and, when M

possesses an asymptotic boundary ∂∞M , it makes sense to study the asymptotic Plateau

problem. For example, when M is the hyperbolic space, the latter asks whether, given a
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subset Λ in ∂∞H3, there exists a properly embedded minimal surface in H3 such that its

asymptotic boundary (that is, its set of accumulation points in ∂∞H3) coincides with Λ.

Hyperbolic geometry In the hyperbolic space, it is in general a difficult problem to

determine which subsets of ∂∞H3 are realized as the asymptotic boundaries of a minimal

surface in H3. A natural class to study, however, is the class of Jordan curves in ∂∞H3 ∼=
S2. Indeed, this class includes the quasicircles, which in turn include the limit sets of quasi-

Fuchsian groups. In this context, the lift to the universal cover of a minimal surface in a

quasi-Fuchsian hyperbolic three-manifold therefore represents a solution to the asymptotic

Plateau problem, where the Jordan curve Λ is the limit set of the corresponding group

acting on H3.

The asymptotic Plateau problem in H3 was first studied by Anderson, who proved

in [And83] the existence for any given Jordan curve Λ. Using geometric measure theory,

Anderson also obtained existence results in higher dimensions, in the class of volume-

minimizing k-dimensional currents in Hn+1; however, the solutions may fail to be smoothly

embedded hypersurfaces on a singular set of dimension n− 7.

The solution of the asymptotic Plateau problem is, however, not unique, as was already

observed by Anderson. In the context of quasi-Fuchsian manifolds, Huang and Wang in

[HW15] constructed a quasi-Fuchsian group whose limit set Λ is the asymptotic boundary

of an arbitrarily large number of invariant stable minimal disks. In my joint work with

Ben Lowe and Zheng Huang, we constructed a more pathological example, without any

group action:

Theorem ([HLS23]). There exists a quasicircle in ∂∞H3 that is the asymptotic boundary

of uncountably many pairwise distinct stable minimal disks.

On the other hand, in the same article we provide a criterion that ensures uniqueness.

In the context of quasi-Fuchsian manifolds, Uhlenbeck was the first to observe the impor-

tance of the so-called almost-Fuchsian condition, namely the condition that the principal

curvatures of the minimal surface are in (−1, 1), and she observed that this condition im-

plies the uniqueness of the minimal surface in a given quasi-Fuchsian manifold. In [HLS23]

we improved this result, getting rid of any group action, and we showed that if a quasicircle

spans a minimal surface with principal curvatures in [−1, 1], then it is unique. A similar

result has been recently achieved by independent methods, and improved to an ambient

space of sectional curvature pinched between −C and −1, in [Bro23].

Pseudo-hyperbolic geometry The pseudo-hyperbolic space Hp,q is the pseudo-Riemannian

analogue of Hn, in any signature (p, q). When q = 1, Hp,1 is a Lorentzian manifold also

known as the (p+ 1)-dimensional Anti-de Sitter space. Similarly to the hyperbolic space,

Hp,q possesses an asymptotic boundary ∂∞Hp,q, so that Hp,q ∪ ∂∞Hp,q is compact, and

∂∞Hp,q is naturally endowed with a conformal pseudo-Riemannian structure.
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One can therefore formulate the asymptotic Plateau problem in Hp,q, and ask whether

one can find a maximal submanifold (i.e. of vanishing mean curvature, the analogue of

minimal submanifolds) with a prescribed asymptotic boundary. When q ≥ 1, there are

several main differences with respect to the case of the hyperbolic space, which makes the

problem more treatable, at least when one considers spacelike submanifolds of dimension

p:

• First, there is a class of subsets of ∂∞Hp,q, namely the non-negative (p− 1)-spheres,

which are the only possible candidates for the asymptotic Plateau problem, because

the asymptotic boundary of any complete spacelike p-dimensional submanifold —

maximal or not — is necessarily in this class.

• Second, any complete spacelike p-dimensional submanifold — again, maximal or not

— can be represented as the graph of a 1-Lipschitz map from a hemisphere in Sp to

Sq; when it is moreover maximal, a direct consequence of elliptic regularity is that

the solution has all the possible regularity, and therefore presence of singularities in

high dimensions does not occur as in the hyperbolic setting.

• Finally, the structure of the pseudo-hyperbolic space allows to apply the maximum

principle to, essentially, the timelike distance between two maximal p-submanifolds,

and to prove uniqueness of the solution, unlike the hyperbolic case.

In my joint work with Graham Smith and Jérémy Toulisse, we obtained a complete

solution to the asymptotic Plateau problem in Hp,q, for p-dimensional spacelike submani-

folds.

Theorem ([SST23]). For every non-negative (p − 1)-sphere Λ in ∂∞Hp,q, there exists a

unique complete maximal p-submanifold of Hp,q with asymptotic boundary Λ.

This result is an improvement of several previous works that treated the case q = 1

([ABBZ12, BS10]) or p = 2 ([CTT19, LTW20]). We remark here that, in codimension one,

the asymptotic Plateau problem can be posed for other classes of submanifolds, for instance

hypersurfaces of constant mean curvature or, when the ambient space has dimension 3,

surfaces of constant Gaussian curvature, called k-surfaces — the latter can also be extended

to higher dimensions in several ways, for instance constant Gauss-Kronecker curvature

or constant scalar curvature. These problems have been studied in the hyperbolic case

(for instance in [Cos16, Cos19] for CMC hypersurfaces, [RS94, Smi22a] for k-surfaces).

When the ambient space is the Anti-de Sitter space, the (generalized) asymptotic Plateau

problem for CMC hypersurfaces has been solved by my PhD student Enrico Trebeschi in

[Tre23], while for k-surfaces in ambient dimension three in my work [BS18] with Francesco

Bonsante.
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Minkowski and equiaffine geometry To conclude this discussion of (generalized) asymp-

totic Plateau problems, let us focus on the (n + 1)-dimensional Minkowski space Rn,1,

which is the geodesically complete Lorentzian manifold of vanishing sectional curvature,

hence the flat version of Anti-de Sitter space, and the Lorentzian analogue of Euclidean

space. There are here two major differences with respect to the Anti-de Sitter setting: the

first is that Rn,1 does not quite possess a natural asymptotic boundary; the second is that

there is much more rigidity for maximal hypersurfaces in Rn,1. Indeed, Cheng and Yau

proved in [CY76] a Bernstein type result, namely that every properly embedded (space-

like) maximal hypersurface in Rn,1 is an affine hyperplane — which makes the asymptotic

Plateau problem for maximal hypersurfaces essentially empty.

Nonetheless, the first difference does not represent a real issue, because one can still

define a notion of“compactification”of the Minkowski space, which is known in the physics

literature as the Penrose boundary. At least for convex hypersurfaces, the asymptotic

boundary of a spacelike hypersurface can then be interpreted as the datum of a lower-

semicontinuous function on Sn−1 (the null support function), which, roughly speaking,

encodes the height of asymptotic planes of lightlike type. As for the second difference, the

(generalized) asymptotic Plateau problem actually becomes perfectly meaningful when

one consider, as discussed above, CMC hypersurfaces (which, when properly embedded,

are always convex by another result of Cheng and Yau), or k-surfaces in R2,1, which are

automatically convex when k > 0, or hypersurfaces of constant scalar curvature, and so

on.

This led me, in a collaboration with Francesco Bonsante and Peter Smillie, to a number

of results: we solved the asymptotic Plateau problem for CMC hypersurfaces in [BSS23]

and for k-surfaces in [BSS19], improving several previous results [CT90, Tre82, Li95, BS17].

While properly embedded CMC hypersurfaces are always complete, k-surfaces are not, and

we have studied the completeness problem in [BSS22]. Hypersurfaces of constant scalar

curvature are the topic of a joint work (in progress) with Pierre Bayard ([BS]).

The results about k-surfaces in R2,1 have an interesting generalization in the context

of affine differential geometry. Given a convex hypersurface in affine n-space, one can con-

struct a transverse vector field, called the affine normal, which is invariant under the group

of volume-preserving affine transformations (called equiaffine transformations). Affine dif-

ferential geometry is then the study of the equiaffine invariants of convex hypersurface.

For example, using the affine normal, one can define the affine shape operator, and its

determinant is the affine Gauss-Kronecker curvature. When n = 2, the notion of constant

affine Gaussian curvature makes sense, and in my work [NS22] with Xin Nie we studied

the asymptotic Plateau problem, formulated in a similar way as it is done for Minkowski

geometry. It is worth observing that, in general, the affine normal does not coincide

with the Euclidean or Minkowski normal. Nonetheless, when a convex hypersurface in

R2,1 has constant Gaussian curvature in the sense of Minkowski geometry, than the affine

and Minkowski normals coincide, and therefore it is also a k-surface in the affine sense.
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Hence, our results actually are a generalization of the picture that comes from Minkowski

geometry.

All the above results on the (generalized) asymptotic Plateau problems will be dis-

cussed in details in the text: in Section 1.3 for hyperbolic geometry; in Sections 4.1 and

4.2 for pseudo-hyperbolic geometry; in Section 5.3 for k-surfaces in Anti-de Sitter three-

space; in Sections 6.2 and 6.3 for various notions of curvature (CMC, Gaussian curvature,

scalar curvature) in Minkowski space; finally, in Sections 8.1 and 8.3 for k-surfaces in

affine differential geometry. Let us now describe their applications to the study of geomet-

ric structures in various directions: minimal Lagrangian maps, convex cocompactness in

H3 and Hp,q, affine deformations of Hitchin representations, and the structure of certain

deformation spaces of geometric structures.

Minimal Lagrangian maps in Teichmüller theory

Submanifolds with special curvature properties in geometric three-manifolds are often as-

sociated to maps between surfaces. For example, a well-known fact in differential geometry

is that a hypersurface in Euclidean or Minkowski space has constant mean curvature if and

only if its Gauss map is harmonic. This observation has been largely used during the 1980s

to construct examples of harmonic maps into Hn, see for example [CT88, CT90, CT93].

Closely related to harmonic maps, minimal Lagrangian maps also played an important

role in the study of hyperbolic surfaces. They are also related to surfaces in geometric

three-manifolds, in several ways. In analogy with the previous characterization of harmonic

maps, one can show that a surface in Euclidean or Minkowski three-space has constant

Gaussian curvature if and only if its Gauss map is minimal Lagrangian. However, minimal

Lagrangian maps are also obtained from maximal surfaces in Anti-de Sitter three-space,

via a construction of Gauss maps type.

Now, Labourie [Lab92] and Schoen [Sch93] independently observed that, given two

closed hyperbolic surfaces (Σ1, h1) and (Σ2, h2), there exists a unique minimal Lagrangian

diffeomorphism in the homotopy class of every diffeomorphism Σ1 → Σ2. Bonsante and

Schlenker in [BS10] used the asymptotic Plateau problem in Anti-de Sitter three-space

(a particular case of the result of [SST23] in pseudo-hyperbolic space of the previous

section) to prove the existence of a minimal Lagrangian extension ΦML : H2 → H2 of any

orientation-preserving circle homeomorphism φ : RP1 → RP1, thus generalizing the result

of Labourie and Schoen. Moreover, they showed that, if φ is quasisymmetric — that is,

its cross-ratio norm ||φ||cr is finite, then ΦML is quasiconformal — that is, the supremum

of its quasiconformal dilatation K(ΦML) is finite. This relates minimal Lagrangian maps

to universal Teichmüller space, and in particular to the problem of finding conformally

natural extensions of quasisymmetric circle homeomorphisms, by providing a new class of

geometrically rich extensions.

By studying the geometry of maximal surfaces in Anti-de Sitter space, I have obtained
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some results on the optimality of the minimal Lagrangian extension. In the direction of

the quantitative optimality, in [Sep19b], I proved:

Theorem. There exists a universal constant C such that, for any quasisymmetric homeo-

morphism φ of RP1, lnK(ΦML) ≤ C||φ||cr.

Moreover, as part of the method to solve the asymptotic Plateau problem in Hp,q, in

[SST23] we showed that if a complete maximal p-submanifold in Hp,q has C3,α asymptotic

boundary, then the norm of its second fundamental form is in Ls (with respect to the

induced volume form) for all s > p − 1. In particular, in H2,q, the norm of the second

fundamental form is in L2, or equivalently, the maximal surface has finite renormalized

area. As a consequence, we obtained the following result on the qualitative optimality of

minimal Lagrangian extensions:

Theorem. If φ is a C3,α circle diffeomorphism, then the Beltrami differential of its unique

quasiconformal minimal Lagrangian extension is in L2(H2,dVolH2).

It is known that Weil-Petersson circle homeomorphisms are precisely those that admit

some quasiconformal extension with Beltrami differential in L2, and it seems therefore

natural to conjecture that the minimal Lagrangian extension has this property.

Convex cocompactness in H3: quasi-Fuchsian manifolds

In the study of geometric structures, convex cocompactness is a very ubiquitous and im-

portant condition, which often allows to relate dynamical properties of a group action with

geometric properties of the quotient manifold.

Among hyperbolic three-manifolds, quasi-Fuchsian manifolds are precisely those hy-

perbolic manifolds homeomorphic to S×R, for S a closed oriented surface, obtained as the

quotient of H3 by a convex cocompact group of isometries. Many results on these struc-

tures have been obtained via minimal surfaces, which, as mentioned above, are related to

the asymptotic Plateau problem, since their lifts to H3 are group-invariant solutions of the

asymptotic Plateau problem with asymptotic boundary the limit set of the group.

Now, the importance of curvature conditions for minimal surfaces in H3 is highlighted

by the class of almost-Fuchsian manifolds, whose definition was inspired by the visionary

work of Uhlenbeck [Uhl83]. Almost-Fuchsian manifolds are defined as quasi-Fuchsian

manifolds containing a closed minimal surface whose principal curvatures are small, which

means smaller than 1 in absolute value — where geometrically this bound should be though

of as “less curved than a horosphere”. A remarkable consequence of this definition is the

fact that the geometry of the entire three-manifold is reconstructed from the minimal

surface — indeed, the manifold is smoothly foliated by the equidistant surfaces to the

minimal surface, which satisfy the condition (similar to CMC, but not the same) that the
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sum of the inverse hyperbolic tangents of the principal curvatures is constant. Moreover,

the minimal surface is actually unique.

In the context of almost-Fuchsian manifolds, there are two conjectures that are open

since the beginning of the 2000s, despite the attempts of several researchers. The first

conjecture goes back to Thurston and asserts that every almost-Fuchsian manifold admits

a (unique) foliation by CMC surfaces — that is, roughly speaking, the foliation equidistant

from the minimal surface can be improved so as to actually satisfy the CMC condition.

The second has been first formulated by Ben Andrews and other authors (see [Rub05])

and asserts that if a quasi-Fuchsian manifold contains a (not necessarily minimal) closed

surface with principal curvatures in (−1, 1), then it is almost-Fuchsian.

In my work [CMS23] with my PhD student Diptaishik Choudhury and Filippo Mazzoli,

we made a (very) partial progress towards Thurston’s conjecture on CMC foliations:

Theorem. Let S be a closed oriented surface of genus ≥ 2. There exists a neighbourhood

U of the Fuchsian locus in quasi-Fuchsian space QF(S) such that every quasi-Fuchsian

manifold in U is smoothly monotonically foliated by CMC surfaces, with mean curvature

ranging in (−1, 1).

The recent preprint [HLZ23] by Huang, Li and Zhang achieved a similar result, but

by different methods, relying on a modified version of the mean curvature flow. Andrew’s

conjecture does not seem to be close to being solved at the present time, but my joint work

[EES22a] with Christian El Emam, which studied a construction of Gauss map type for

almost-Fuchsian manifolds, was motivated by a possible approach to Andrew’s conjecture

via the geometry of the space of geodesics of H3.

Convex cocompactness in Hp,q: Anosov representations

We now discuss some applications of the asymptotic Plateau problem in Hp,q to the study

of Anosov representations in PO(p, q + 1), which is identified with the isometry group of

Hp,q. Let Γ be a word hyperbolic group whose Gromov boundary is homeomorphic to

Sp−1. Following [DGK18], a representation ρ of Γ in PO(p, q + 1), is positive P1-Anosov

(i.e., in short, it admits a proximal limit set Λρ which is a positive, hence in particular

non-negative, sphere of dimension p − 1) if and only if it has finite kernel and ρ(Γ) acts

convex cocompactly on Hp,q (i.e. there exists a convex region, which can be taken to be

the convex hull of Λρ, on which ρ(Γ) acts properly discontinuosly and cocompactly). An

immediate consequence of the existence and uniqueness of the solution to the asymptotic

Plateau problem in Hp,q is the following:

Corollary. If Γ is a hyperbolic group with ∂Γ ∼= Sp−1 and ρ : Γ→ PO(p, q+1) is a positive

P1-Anosov representation, then ρ(Γ) preserves a unique complete maximal submanifold Σ

in Hp,q, and the action of ρ(Γ) on Σ is properly discontinuous and cocompact.
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This corollary has been one of the ingredients in the recent work [BK23], which exhib-

ited new examples of “higher higher Teichmüller spaces”, that is, connected components

of the space of representations of Γ into a Lie group G which consist entirely of discrete

and faithful representations. Indeed, using the existence of ρ-invariant complete spacelike

submanifolds, [BK23] showed that the space of positive P1-Anosov representations is a

union of connected components in the space of representations of Γ in PO(p, q + 1). A

posteriori, combining [BK23] and [SST23], the above corollary is actually an “if and only

if”.

The corollary above also permits to make some partial progress on the question of

which (torsion-free) hyperbolic groups Γ as above do admit Anosov representations.

Corollary. If Γ is a torsion-free hyperbolic group with ∂Γ ∼= Sp−1 that admits a positive

P1-Anosov representation ρ : Γ → PO(p, q + 1), then Γ is isomorphic to the fundamental

group of a closed smooth p-dimensional manifold M whose universal cover is diffeomorphic

to Rp.

Observe that when p ≥ 6, from [BLW10], any torsion-free hyperbolic group Γ with

Gromov boundary homeomorphic to Sp−1 is isomorphic to the fundamental group of a

closed topological p-dimensional manifold M whose universal cover is homeomorphic to

Rp. However, for p = 4k, k ≥ 2, there are examples where M cannot be made a smooth

manifold. The following corollary follows.

Corollary. For every k ≥ 2, there exists a torsion-free hyperbolic group Γ with ∂Γ ∼= S4k−1

which does not admit any positive P1-Anosov representation into PO(4k, q + 1).

In [SST23] we have also obtained an application to the topology of the quotient of

Guichard-Wienhard’s domain of discontinuity Ωρ, introduced in [GW12], in the space of

maximally isotopic subspaces of Rp,q+1. Indeed, it can be proved that Ωρ/ρ(Γ) has a fiber

bundle structure over the manifold M as above.

Hitchin representations and affine deformations

In the setting of higher Teichmüller theory, given a closed oriented surface S of genus at

least 2, the Hitchin component for SL(3,R) is the connected component of the space of

representations of π1(S) into SL(3,R) that contains the compositions of Fuchsian represen-

tations in SL(2,R) with the unique (up to conjugacy) irreducible representation of SL(2,R)

into SL(3,R). One of the first instances of higher Teichmüller theory have been precisely

the understanding of the SL(3,R)-Hitchin component in terms of geometric structures:

from [Gol90, CG93], Hitchin representations are precisely the holonomies of properly con-

vex real projective structures on S. These convex real projective structures are obtained as

the quotient of the projectivization of a proper convex cone C in R3 which is invariant by

the action of the Hitchin representation. Moreover, tools from affine differential geometry
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permit to understand the action of a Hitchin representation ρ on C, since ρ preserves a

foliation of C by affine spheres, namely convex surfaces whose affine shape operator is a

multiple of the identity.

In [Lab07], Labourie studied affine deformations of Hitchin representations, namely

representations of π1(S) in SL(3,R) oR3 (the equiaffine group of R3), showing that such

representations ρ preserve a convex surface of constant affine Gaussian curvature k, for

every k > 0. On the other hand, affine deformations of Fuchsian representations had been

largely studied, since the work of Mess [Mes07], in relation with Minkowski geometry:

in fact, they preserve a so-called regular domain, whose quotient is a maximal globally

hyperbolic (MGH) flat Lorentzian manifold, and this construction led to the classification

of MGH flat Lorentzian manifolds of dimension 2 + 1. Labourie’s result thus recovers

the existence result for k-surfaces in MGH flat Lorentzian manifold, originally proved in

[BBZ11].

In my work [NS23a] with Xin Nie, we took an approach for the study of k-surfaces that

derives from the (generalized) asymptotic Plateau problem, as in our previous work [NS22].

We improved the result of Labourie by completely independent methods. First, we proved

the existence of an invariant C-regular domain D, a notion that generalizes regular domains

in Minkowski space, for any affine deformation of a Hitchin representation. Second, using

Monge-Ampère equations to solve an asymptotic Plateau problem, we managed to prove

existence of the corresponding (group invariant) affine k-surface in D. When k varies in

(0,+∞), these k-surface provide a foliation of D: this is a novel result, that generalizes

both the foliations of C by affine spheres, and the foliations of MGH manifolds by constant

Gaussian curvature from [BBZ11]. Finally, our method permit to extend those results also

to surfaces S with punctures, replacing Hitchin representations by the holonomies of finite

volume convex real projective structures.

Geometry of deformation spaces

Most results described above in the context of geometric structures are of a rather direct

type, in the sense that they provide information on a given manifold endowed with a

(G,X)-structure. Another very fruitful approach to the understanding of geometric struc-

tures rests instead on the study of their deformation space, namely a topological space

consisting of equivalence classes of (G,X)-structures on a given manifold M , where two

structures are in the same equivalence class if and only if they admit an isomorphism of

(G,X)-structures which is in the identity component of the diffeomorphism group of M .

A fundamental example is the Teichmüller space of a closed surface S, which can be inter-

preted as the deformation space of hyperbolic structures on S. Generalizations of the rich

structures with which the Teichmüller space is endowed, such as the Weil-Petersson metric

(which is a mapping class group invariant Kähler metric), have been an important subject

with many remarkable achievements obtained in various directions and for different types
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of (G,X)-structures ([McM00, LSY04, BT08, Lou15, Li16, KZ17]).

In the pioneering paper [Don03], Donaldson exhibited surprising applications in dif-

ferential geometry of infinite-dimensional symplectic reductions. The most relevant one

in our context is the construction of a mapping class group invariant hyperKähler metric

in the deformation space of almost-Fuchsian manifolds homeomorphic to S × R, for S a

fixed closed oriented surface. Remarkably, this construction highly relies on the presence

of (unique) closed minimal surfaces, with principal curvatures in (−1, 1), in every almost-

Fuchsian manifold. Donaldson’s hyperKähler metric extends the Weil-Petersson metric on

the Fuchsian locus, which is identified with the Teichmüller space via the totally geodesic

surface.

Now, in my article [MST23a] with Filippo Mazzoli and Andrea Tamburelli we per-

formed a construction that parallels the one of Donaldson, now in the context of MGH

Anti-de Sitter manifolds, which are the Lorentzian counterpart of quasi-Fuchsian hyper-

bolic three-manifolds. Our results demonstrate that the natural structure in this set-

ting is instead a so-called para-hyperKähler metric extending the Weil-Petersson metric.

This para-hyperKähler metric recovers, and unifies, essentially all the structures that

have been previously known on the Anti-de Sitter deformation space — see for instance

[KS07, BMS13, SS18]. My work in preparation with Christian El Emam, Filippo Maz-

zoli and Andrea Tamburelli investigates a phenomenon of transition (see below for more

details) between Donaldson’s hyperKähler metric and our para-hyperKähler metric.

Importantly, as in the work of Donaldson, our techniques strongly rely on the exis-

tence and uniqueness of maximal surfaces in MGH Anti-de Sitter manifolds. These have

been a fundamental tool also in my article [BST17] with Francesco Bonsante and Andrea

Tamburelli, where we studied the large-scale behaviour of the volume functional on the

deformation space of MGH Anti-de Sitter manifolds.

Two digressions of topological flavour

My interest in the study of (G,X)-structures led me, over the years, to a couple of “di-

gressions” that have a more topological flavour, instead of relying on differential geometric

tools such as the theory of submanifolds.

The first digression started when I was a Master student, and led to several papers

with Mattia Mecchia and, recently, with Olivero Malech, who is now a PhD student

at SISSA. We have been interested in the interplay, in the context of three-dimensional

closed orbifolds, between some of the eight Thurston’s geometries and the topological data

of Seifert fibrations for orbifolds. Indeed, it is known that closed manifolds (and orbifolds)

endowed with six of the eight Thurston’s geometries admit Seifert fibrations, and the

geometry is determined by some global topological invariants, namely the base orbifold

and the Euler number. In order to obtain a complete list of invariants, however, one needs

the additional information of some local invariants for each non-generic fiber.
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Now, the classification of closed orbifolds endowed with one of those six geometries

would boil down to the topological classification of Seifert orbifolds, which is completely

understood in terms of the global and local invariants, except for the following issue: a given

geometric orbifold may admit several Seifert fibrations, pairwise topologically inequivalent.

It turns out that this may only occur when the geometry is one among Euclidean, spherical

or S2 × R. In the papers [MS20, MMS23] we gave a complete answer to what we called

the multiple fibration problem. For Euclidean geometry, the solution had already been

presented in the work [CDFHT01] of Conway, Delgado, Huson and Thurston, where it

is called the alias problem, meaning that a given orbifold may admit several inequivalent

lists of Seifert invariants, i.e. several “names” . However, the method of [CDFHT01] is

computer assisted, while in [MMS23] we developed a direct approach also for the Euclidean

case, not relying on computer proofs.

The second digression concerns a phenomenon of geometric transition, introduced in

[Dan11, Dan13] and further studied in [Dan14, DGK16, CDW18] and others. This phe-

nomenon roughly consists in a continuous deformation of geometric structures on a fixed

manifold M , that at a given time abruptly“transitions” from hyperbolic structures to Anti-

de Sitter structures, going through an intermediate (degenerate) geometry called half-pipe

geometry. This intermediate geometry is actually closely related, via a “spacelike duality”

to Minkowski geometry, and it had indeed been known under the name of co-Minkowski

geometry since much before. This geometric transition is related to the study of non

pseudo-Riemannian (G,X)-structures, since, as explained by Danciger, the right setting

to describe the transition is within the world of real projective structures.

Now, it is in general a difficult problem to determine which manifolds (together with

a singular locus, which must necessarily appear) admit such a transition of geometric

structures. The initial work of Danciger provided a sufficient criterion in order to produce

examples of geometric transition on closed three-dimensional manifolds (with singularities

on a knot). Recently, in [Dia23b] my PhD student Farid Diaf proved that a very large class

of examples (not only in the closed case, but also for finite volume, with singularities on a

link) can be obtained by doubling the convex cores of quasi-Fuchsian manifolds and MGH

Anti-de Sitter manifolds. In my works with Stefano Riolo [RS22b, RS22a] we constructed

and studied the first four-dimensional examples, giving a geometric transition from hyper-

bolic to Anti-de Sitter structures of finite volume. These two topological “digressions” are

the topics described in Chapters 3 and 7 respectively.
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manifolds in pseudo-hyperbolic space. Preprint, ArXiv 2305.15103, 60 pages,

2023

[HLS23] Zheng Huang, Ben Lowe, and Andrea Seppi. Uniqueness and non-uniqueness for

the asymptotic Plateau problem in hyperbolic space. Preprint, ArXiv 2309.00599,

38 pages, 2023



List of publications 15

In preparation

The following drafts are the most relevant works in preparation, and their results are

partially described in the text.

[BS] Pierre Bayard and Andrea Seppi. Constant scalar curvature hypersurfaces in

minkowski n-space. In preparation

[EMST] Christian El Emam, Filippo Mazzoli, Andrea Seppi, and Andrea Tamburelli.

Transitions of (para-)hyperKähler structures between almost-Fuchsian and GHMC

AdS deformation spaces. In preparation

Other works

The works below are considered of minor importance. They are mentioned briefly in the

text, much less in details than the main publications and preprints above.

[Sep18] Andrea Seppi. The flux homomorphism on closed hyperbolic surfaces and Anti-de

Sitter three-dimensional geometry. Complex Manifolds, 4(1):183–199, 2018

[BS19] Francesco Bonsante and Andrea Seppi. Equivariant maps into Anti-de Sitter

space and the symplectic geometry of H2×H2. Trans. Amer. Math. Soc., 371(8):5433–

5459, 2019

[Sep19c] Andrea Seppi. On the maximal dilatation of quasiconformal minimal Lagrangian

extensions. Geometriae Dedicata, 203:25–52, 2019

[Sep19a] Andrea Seppi. Examples of geometric transition from dimension two to four.
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Chapter 1

Hyperbolic geometry

In dimension three, hyperbolic structures represent a class of (G,X)-structures of funda-

mental importance in geometric topology for many reasons. For instance, they played an

essential role in the celebrated Geometrization Program that was formulated by William

Thurston in the 1970s and led to many spectacular achievements, among which the solu-

tion of the longstanding Poincaré Conjecture.

Quasi-Fuchsian manifolds are hyperbolic three-manifolds homeomorphic to S × R
where S is a closed oriented surface, which are obtained as quotients of the hyperbolic

space H3 by a group of isometries whose set of accumulation points in the sphere at infin-

ity ∂∞H3 (called limit set) is a Jordan curve. They represent an extremely important and

ubiquitous class of hyperbolic manifolds: indeed, the Surface Subgroup Conjecture, solved

in 2012 by Kahn and Markovic ([KM12]), asserts that every closed hyperbolic manifold

admits (many) coverings which, endowed with the pull-back metric, are quasi-Fuchsian

manifolds.

1.1 Minimal and CMC surfaces: conjectures and open questions

The story goes that William Thurston, when developing the study of quasi-Fuchsian man-

ifolds, had initially planned to use an analytic approach through minimal surfaces, as a

natural three-dimensional extension of the role played by closed geodesics on surfaces.

However, a number of technical issues, not least the fact that, although quasi-Fuchsian

manifolds always contain a closed minimal surface, it may not be unique [And83, HW15],

led him to change approach and rely on more combinatorial objects, namely pleated sur-

faces. The latter gave rise to many spectacular developments for three-dimensional hyper-

bolic manifolds and nearby topics ([Bon86, KS92, BO05, Ser05, Lec06, Ser06, BS12, LS14]),

but are extremely hard to generalize to other situations such as in a non-metric setting,

in higher dimensions, and for manifolds of variable curvature.

Elucidating the difficulties that led Thurston to change perspective, by developing the

study of minimal surfaces in quasi-Fuchsian manifolds, remains a guiding challenge in

18
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three-dimensional hyperbolic geometry. Among quasi-Fuchsian manifolds, a distinguished

class is represented by almost-Fuchsian manifolds, whose definition was inspired by the

visionary work of Uhlenbeck [Uhl83], see [KS07, GHW10, HW13, Sep16, San17, HL21].

Almost-Fuchsian manifolds are defined as quasi-Fuchsian manifolds containing a closed

minimal surface whose principal curvatures are small, which means smaller than 1 in

absolute value — where geometrically this bound should be though of as “less curved than

a horosphere”. The most remarkable consequence of this definition is the fact that the

geometry of the entire three-manifold is reconstructed from the minimal surface, and the

latter is actually unique.

Let us mention here three longstanding conjectures in the context of minimal and,

more generally, constant mean curvature surfaces in hyperbolic manifolds, that are still

open despite the attempts of many researchers.

The first conjecture goes back to Thurston and asserts the existence of foliations by

constant mean curvature (CMC) surfaces. Indeed, it is known that an almost-Fuchsian

manifold is foliated by the equidistant surfaces from its (unique) closed minimal surface.

Such equidistant foliation has the property that the sum of the inverse hyperbolic tan-

gent of the principal curvature is constant on any leaf, and in particular the sign of the

mean curvature is constant. Moreover, like almost-Fuchsian manifolds, if a quasi-Fuchsian

manifolds admits a CMC foliation which is in addition monotone (meaning that the mean

curvature varies monotonically among the leafs), then the minimal surface is unique. This

led to the following natural conjecture:

Conjecture (Thurston). Every almost-Fuchsian manifold is uniquely (monotonically) foli-

ated by CMC surfaces.

The second conjecture concerns (local) foliations by minimal surfaces. Hass-Thurston

conjectured that no closed hyperbolic 3-manifold admits a foliation by minimal surfaces.

We state here this conjecture in a stronger form, which appears in [And83]:

Conjecture (Hass-Thurston). No hyperbolic 3-manifold admits a local 1-parameter family

of closed minimal surfaces.

It has been a folklore conjecture that no Jordan curve in S2
∞ = ∂∞H3 asymptotically

bounds a 1-parameter family of minimal surfaces. The full extent of these conjectures

remain as major open questions in the field.

What has been proven up to this point tends to support Hass-Thurston conjecture, and

the above version for Jordan curves. Anderson [And83] proved it for quasi-Fuchsian hy-

perbolic 3-manifolds. Huang-Wang [HW19] and Hass [Has15] made progress on the Hass-

Thurston conjecture for certain fibered closed hyperbolic 3-manifolds containing short

geodesics; Wolf-Wu ([WW20]) ruled out so-called geometric local 1-parameter families

of closed minimal surfaces; it follows from the work of Alexakis-Mazzeo [AM10] that a

generic C3,α simple closed curve in the boundary at infinity of H3 bounds only finitely
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many minimal surfaces of any given finite genus; Coskunuzer proved that generic simple

closed curves in ∂∞H3 bound a unique area-minimizing surface [Cos11].

Finally, the third conjecture has been first formulated by Ben Andrews and other

authors in the beginning of 2000s (see [Rub05]) and concerns an important criterion for

a quasi-Fuchsian manifold to be almost-Fuchsian:

Conjecture (Andrews). If a quasi-Fuchsian manifold contains a closed surface with prin-

cipal curvatures in (−1, 1), then it is almost-Fuchsian.

In fact, in the literature the name nearly-Fuchsian has been adopted for the class of

quasi-Fuchsian manifolds containing a closed surface with principal curvatures in (−1, 1).

The class of nearly-Fuchsian manifolds is clearly larger than almost-Fuchsian manifolds,

and Andrew’s conjecture asserts that the two classes are equivalent.

In the following sections, we present (very) partial progress made towards these three

conjectures, in the works [CMS23], [HLS23] and [EES22a] respectively.

1.2 CMC foliations

Let us start by discussing progress on the conjecture by Thurston on the existence of

CMC foliations for almost-Fuchsian manifolds. Very few is known in this direction. First,

clearly any Fuchsian manifold (namely, that is obtained as the quotient of H3 by a Fuchsian

group in PSL(2,R) < PSL(2,C)) admits a CMC foliation, which is given by the surfaces

equidistant from the totally geodesic surface; this is the only known explicit example. By

a special case of the results of Mazzeo and Pacard in [MP11], each end of any quasi-

Fuchsian manifold (namely, each connected component of the complement of a compact

set homeomorphic to Σ× I for I a closed interval) is smoothly monotonically foliated by

CMC surfaces, with mean curvature ranging in (−1,−1 + ε) and (1− ε, 1). This result has

been reproved by Quinn in [Qui20], using an alternative approach. Moreover, the recent

work of Guaraco-Lima-Pallete [GPL21] showed that every quasi-Fuchsian manifold admits

a global foliation in which every leaf has constant sign of the mean curvature, meaning

that it is either minimal or the mean curvature is nowhere vanishing on the entire leaf.

We also remark that existence results for CMC surfaces in the hyperbolic three-space

with a given boundary curve at infinity, and in quasi-Fuchsian manifolds, have been ob-

tained in [Cos16, Cos17, Cos19]. In [CMS23], together with my PhD student Diptaishik

Choudhury and with Filippo Mazzoli, we proved the following result, which is a partial

progress in the direction of Thurston’s conjecture. We denote by QF(Σ) the space of

quasi-Fuchsian manifolds homeomorphic to S ×R, for S a given closed orientable surface

of genus ≥ 2.

Theorem 1.2.1. Let Σ be a closed oriented surface of genus ≥ 2. Then there exists a

neighbourhood U of the Fuchsian locus in quasi-Fuchsian space QF(Σ) such that every



Part I. Thurston’s Riemannian geometries 21

quasi-Fuchsian manifold in U is smoothly monotonically foliated by CMC surfaces, with

mean curvature ranging in (−1, 1).

The monotone CMC foliation of a quasi-Fuchsian manifold M ∼= Σ×R, when it exists,

is automatically unique by a standard application of the geometric maximum principle.

More precisely, the leaf of the foliation with mean curvature H is the unique closed surface

homotopic to Σ× {∗} in M having mean curvature identically equal to H.

Observe that, if a quasi-Fuchsian manifold admits a monotone CMC foliation, then

the mean curvature necessarily ranges in (−1, 1). Indeed, any leaf of the foliation must

necessarily have mean curvature in (−1, 1), see [Cos06, Lemma 2.2]. Moreover, by the

aforementioned result of Mazzeo-Pacard, the mean curvature converges to −1 and 1 as

the foliation approaches the ends.

The methods of the proof of Theorem 1.2.1, which are outlined below, also provide a

direct proof of the existence of closed embedded CMC surfaces of mean curvature H ∈
(−1, 1) in the quasi-Fuchsian manifolds M within the neighbourhood U . Our proof is

independent of previous result in the literature, and does not rely on geometric measure

theory techniques.

The rough idea of the proof of Theorem 1.2.1 is to “combine” foliations of the ends,

which have been provided in the works of Mazzeo-Pacard and Quinn for every quasi-

Fuchsian manifold, with foliations of the compact part that we obtain by a “deformation”

from Fuchsian manifolds. For the foliations of the ends, we adapted the proof given by

Quinn in [Qui20], which relies on the Epstein map construction ([Eps84, Dum17]), that

associates to a conformal metric defined in (a subset of) the boundary at infinity of H3

an immersed surface in H3 by “envelope of horospheres”. One can then translate the

condition of constant mean curvature into a PDE on the conformal factor, to which we

apply an implicit function theorem method in an infinite-dimensional setting. The fact

that the obtained solutions provide a smooth monotone foliation of the complement of a

large compact set in the quasi-Fuchsian manifold M follows from another application of

the implicit function theorem. The main difference with respect to Quinn’s proof is that

we refined his method in order to achieve the existence of monotone foliations by CMC

surfaces of mean curvature (−1,−1 + ε) ∪ (1− ε, 1) for any quasi-Fuchsian manifold in a

neighbourhood UM of a given M ∈ QF(Σ), where the constant ε is uniform over UM .

For the compact part, we again obtained the existence of CMC surfaces, for H ∈
(−1, 1), with an implicit function theorem method in infinite-dimensional spaces, using

the Epstein construction. In this case, however, the initial solution to which we apply the

implicit function theorem is not “at infinity”; it is instead the umbilical CMC surface in a

Fuchsian manifold. In other words, we “deform” CMC surfaces in a Fuchsian manifold M ′

to nearby quasi-Fuchsian manifolds in a neighbourhood UM ′ . Similarly as above, the main

technical difficulty is to have a uniform control of the constants, which must not depend

on the quasi-Fuchsian manifold as long as we remain in the neighbourhood UM ′ .

The proof of Theorem 1.2.1 is then concluded by showing that these surfaces “patch”
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together to a global smooth monotone foliation. It is worth mentioning that the recent

work [HLZ23] by Huang, Li and Zhang showed the convergence of modified version of the

mean curvature flow under some hypothesis on the initial surface, thus obtaining a CMC

foliation in certain almost-Fuchsian manifolds which are “close” to the Fuchsian locus in a

suitable, quantitative sense.

1.3 Uniqueness and non-uniqueness of minimal surfaces

The classical “asymptotic Plateau problem” asks, given a Jordan curve Λ on S2
∞ = ∂∞H3,

how to count the number of (properly embedded) minimal surfaces Σ in H3, if any, that

are asymptotic to Λ, in the sense that the closure of Σ in S2
∞ ∪H3 is equal to Λ ∪Σ. The

existence of minimal disk solutions to the asymptotic Plateau problem was obtained by

Anderson ([And83]). Using geometric measure theory, Anderson also obtained existence

results in higher dimensions: he proved the existence of volume-minimizing k-dimensional

currents in Hn+1 bounded by any given closed, embedded (k−1)-dimensional submanifold

of ∂∞Hn+1. While for n = 2 Anderson showed that every Jordan curve Λ in ∂∞H3 bounds

a smoothly embedded minimal disk, in higher dimension and codimension the questions of

regularity, topological type, and uniqueness of such minimizing currents present hard and

subtle problems (see, for example, [Cos14]). Indeed, the solution lies in the class of locally

integral n-currents, and may fail to be smoothly embedded hypersurfaces on a singular set

of dimension n− 7.

The uniqueness does not hold in general: as shown in [And83, HW15], taking advantage

of group actions, one can construct a Jordan curve Λ in S2
∞ = ∂∞H3 which is the limit set

of some quasi-Fuchsian group such that Λ spans multiple minimal disks (even an arbitrarily

large, but finite, number). Anderson ([And83]) even constructed a curve Λ which spans

infinitely many minimal surfaces (the surfaces he constructs have positive genus). On the

other hand, when Λ is a round circle, the unique minimal surface it spans is a totally

geodesic disk. To look for unique solutions, it is therefore natural to consider the class

of minimal surfaces that are “close” to totally geodesic, for which Λ is “close” to a round

circle. Related questions with conditions on natural invariants of Λ were studied in [Sep16]

(for the quasi-conformal constant of Λ), and [HW13, San18] (for the Hausdorff dimension

of Λ). Some properness questions for the asymptotic Plateau problem solutions for various

classes of curves were addressed, for example, in [GS00, AM10].

1.3.1 Strong non-uniqueness

While compatible with the folklore conjecture that no Jordan curve is the asymptotic

boundary of a 1-parameter family of minimal surfaces, in [HLS23] we proved a result in

the other direction. One might be tempted to strengthen the folklore conjecture to the

statement that any Jordan curve in S2
∞ = ∂∞H3 bounds at most countably many minimal
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surfaces. We show that this stronger statement is false:

Theorem 1.3.1. There exists a quasicircle in S2
∞ = ∂∞H3 spanning uncountably many

pairwise distinct stable minimal disks.

Let us emphasize some important features of the construction of this extreme curve

Λ. In ([And83]), Anderson constructed a Jordan curve which is the limit set of a quasi-

Fuchsian groups (hence continuous but almost nowhere differentiable) such that it spans

infinitely many minimal surfaces, one of which is a minimal disk. In [HW15], for each

integer N > 1, also using the limit set of a quasi-Fuchsian group, an extreme curve span-

ning at least 2N distinct minimal disks, invariant under the quasi-Fuchsian group, was

constructed. However, Anderson ([And83]) has shown that any quasi-Fuchsian manifolds

only admits finitely many least area closed minimal surfaces diffeomorphic to the fiber,

which poses a possible limitation on how much one can improve the aforementioned con-

structions to find infinitely many minimal disks if one insists on using the limit set of some

quasi-Fuchsian group as the curve at infinity. The starting point of our construction is

similar to the ideas in [HW15], but the Jordan curve is constructed in such a way to allow

an improvement of the argument, leading to 2N pairwise distinct minimal disk. Moreover,

since this Jordan curve is not invariant under any quasi-Fuchsian group, we must adopt

a different approach in order to produce the minimal disks, namely, in a spirit similar to

the proofs of Theorems 1.3.2 and 1.3.3 below, we take the limit of a sequence of solutions

of the finite Plateau problems inside H3.

1.3.2 Characterizing uniqueness

Let us now turn to conditions that ensure the uniqueness of the solutions of the asymptotic

Plateau problem. Our first theorem shows that it suffices to check uniqueness in the class

of stable minimal disks.

Theorem 1.3.2. Let Λ be a Jordan curve on S2
∞ = ∂∞H3. Then Λ spans a unique minimal

surface if and only if it spans a unique stable minimal disk.

A statement similar to Theorem 1.3.2, but in the context of the finite Plateau problem,

was proved in [MY19]. When Λ is invariant under the action of a Kleinian group (i.e. a

discrete subgroup of isometries of H3), we can prove a stronger statement.

Theorem 1.3.3. Let Λ be a Jordan curve on S2
∞ = ∂∞H3, and let Γ be any Kleinian group

preserving Λ. Then Λ spans a unique minimal surface if and only if it spans a unique

Γ-invariant stable minimal disk.

Theorem 1.3.3 applies, for instance, to Γ a quasi-Fuchsian group and Λ its limit set,

but also more generally to any discrete group of isometries preserving a Jordan curve Λ.

The main idea in the proof of Theorem 1.3.2 is an adaptation of an argument in [And83,

Theorem 3.1]: we show that if there is a minimal surface, which is not stable or is not
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topologically a disk, with asymptotic boundary Λ, then we can construct two distinct —

actually, disjoint — stable minimal disks with the same asymptotic boundary Λ. The

proof of Theorem 1.3.3 then relies on a further improvement of the arguments of [And83,

Theorem 3.1], showing that if there is a non-invariant stable minimal disk, then we can

construct two disjoint invariant stable minimal disks.

1.3.3 Uniqueness criteria via curvature conditions

Next, we turn our attention to sufficient conditions for uniqueness. For an immersed

hypersurface in Hn+1, or more generally in a hyperbolic (n + 1)-manifold, we say it has

strongly small curvature if its principal curvaturess {λi} satisfy that

|λi| ≤ 1− ε, i = 1, . . . , n, for some small ε > 0. (1.1)

Similarly we say it has small curvature if |λi| < 1, and it has weakly small curvature if |λi| ≤
1. This definition has some immediate consequences: for instance, a complete immersion

of weakly small curvature is in fact a properly embedded topological disk ([Eps84, Eps86].

Surfaces of small curvature are very special in Teichmüller theory: Thurston observed

that a closed surface of small principal curvatures in a complete hyperbolic three-manifold

is incompressible ([Thu86, Lei06]); they are abundant in closed hyperbolic three-manifolds

([KM12]); many results have been extended to the study of complete noncompact hyper-

bolic three-manifold of finite volume ([Rub05, CF19, KW21]).

It is known ([Uhl83]) that any almost-Fuchsian manifolds admits a unique closed min-

imal surface — in other words, identifying the almost-Fuchsian manifold with a quotient

H3/Γ, the limit set Λ of the group Γ bounds a unique Γ-invariant minimal disk asymptotic

to Λ. Inspired by this fact, we prove (Corollary 1.3.5 below) that if a Jordan curve Λ (not

necessarily group equivariant) spans a minimal disk Σ of strongly small principal curva-

tures in H3, then Σ is the unique minimal surface asymptotic to Λ. Our results, however,

are more general. The main result we proved in this direction is the following:

Theorem 1.3.4. Let Λ be a topologically embedded (n−1)-sphere on Sn∞ = ∂∞Hn+1 of finite

width, and let Σ be a minimal hypersurface in Hn+1 of weakly small principal curvatures

asymptotic to Λ. Then Σ is the unique minimal hypersurface in Hn+1 asymptotic to Λ.

Moreover, Σ is area-minimizing.

Let us explain the terminology of the statement. First, recall that a hypersurface Σ is

area-minimizing if any compact codimension-zero submanifold with boundary has smaller

area than any rectifiable hypersurface with the same boundary in the ambient space. This

implies that Σ is a stable minimal hypersurface. Second, the width of a Jordan curve Λ

in S2
∞ = ∂∞H3 has been introduced in [BDMS21] — and the definition is immediately

extended to higher dimensions — as the supremum over all points in the convex hull of Λ

of the sum of the distances from each boundary component of the convex hull.
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A similar result has been recently achieved (with an independent approach) by Bron-

stein in [Bro23] and improved to an ambient space of sectional curvature pinched between

−C and −1 and to minimal submanifolds of any codimension, but requiring the small

curvature condition (instead of the weakly small curvature condition).

Theorem 1.3.4 has several corollaries. Firstly, if a properly embedded hypersurface Σ

has strongly small curvatures, then its asymptotic boundary has finite width. Hence we

obtained:

Corollary 1.3.5. Let Λ be a topologically embedded (n − 1)-sphere on Sn∞ = ∂∞Hn+1, and

let Σ be a minimal hypersurface in Hn+1 of strongly small principal curvatures asymptotic

to Λ. Then Σ is the unique minimal hypersurface in Hn+1 asymptotic to Λ. Moreover, Σ

is area-minimizing.

Secondly, in dimension n = 2, quasicircles are an important class of Jordan curves,

which are known to have finite width. (On the other hand, there exists Jordan curves

of finite width which are not quasicircles, as constructed in [BDMS21].) We thus obtain

immediately the following.

Corollary 1.3.6. Let Λ be a quasicircle on S2
∞ = ∂∞H3, and let Σ be a minimal surface in

H3 of weakly small principal curvatures asymptotic to Λ. Then Σ is the unique minimal

surface in H3 asymptotic to Λ. Moreover, Σ is area-minimizing.

We remark that the setting of Theorems 1.3.2 and 1.3.3 is more general than Theorem

1.3.4 and Corollary 1.3.6. Indeed, it follows from [HL21, Theorem 5.2] that there are

examples of quasi-Fuchsian groups Γ whose limit set Λ bounds a unique Γ-invariant stable

minimal disk Σ (hence, by Theorem 1.3.3, a unique minimal surface), but Σ does not have

weakly small curvature.

1.3.4 Quasiconformal constant

Corollary 1.3.6 led to an improvement of the curvature estimates that I had obtained

in [Sep16], during my PhD thesis. Indeed, [Sep16, Theorem A] showed that there exist

universal constants C > 0 and K0 > 1 such that any stable minimal disk in H3 with

asymptotic boundary a K-quasicircle, for K < K0, has principal curvatures bounded in

absolute value by C logK. This result has been recently applied in several directions, see

[Bis21, Low21, CMN20, KMS23].

The proof, however, relied on the application of compactness for minimal surfaces, and

therefore requires stability. However, when K is sufficiently small, the principal curvatures

of the area-minimizing (hence stable) disk whose existence is guaranteed by [And83] are

less than 1 − ε in absolute value, and therefore, as a consequence of Corollary 1.3.6, Σ is

the unique minimal surface. Up to taking a smaller constant K0, one can therefore remove

the stability assumption:
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Corollary 1.3.7. There exist universal constants C > 0 and K0 > 1 such that the principal

curvatures λi of any minimal surface Σ in H3 with asymptotic boundary a K-quasicircle

with K ≤ K0 satisfy

|λi| ≤ C logK, i = 1, 2.

In particular, this also improves [Sep16, Theorem B] (up to choosing a smaller constant)

by removing the stability assumption.

Corollary 1.3.8. There exists a universal constant K ′0 > 1 such that any K-quasicircle

with K ≤ K ′0 is the asymptotic boundary of a unique minimal surface, which is an area-

minimizing disk of strongly small curvature.

1.4 Gauss map in hyperbolic geometry

The purpose of the work [EES22a] consists in presenting a framework in which it ap-

pears natural to study the Andrew’s conjecture on the equivalence between the classes

of almost-Fuchsian and nearly-Fuchsian manifolds. The idea is to study immersions of

(hyper)surfaces in H3 (and more in general, in the hyperbolic space Hn+1 of any dimen-

sion), in relation with the geometry of their Gauss maps in the space of oriented geodesics

of Hn+1. We considered in particular nearly-Fuchsian immersions, namely with principal

curvatures in (−1, 1), and immersions of M̃ which are equivariant with respect to some

group representation ρ : π1(M)→ Isom(Hn+1), for M a n-manifold.

1.4.1 Spaces of geodesics

In the groundbreaking paper [Hit82], Hitchin observed the existence of a natural complex

structure on the space of oriented geodesics in Euclidean three-space. A large interest has

then grown on the geometry of the space of oriented (maximal unparametrized) geodesics

of Euclidean space of any dimension (see [GK05, Sal05, Sal09, GG14]) and of several other

Riemannian and pseudo-Riemannian manifolds (see [AGK11, Anc14, Bar18]). Here we

are interested in the case of hyperbolic n-space Hn, whose space of oriented geodesics

is denoted here by G(Hn). The geometry of G(Hn) has been addressed in [Sal07] and,

for n = 3, in [GG10a, GG10b, Geo12, GS15]. The most relevant geometric structure

on G(Hn) in our context is a natural para-Kähler structure (G,J,Ω) first introduced in

[AGK11, Anc14]. A particularly relevant feature of such para-Kähler structure is the fact

that the Gauss map of an oriented immersion σ : M → Hn, which is defined as the map

that associates to a point of M the orthogonal geodesic of σ endowed with the compatible

orientation, is a Lagrangian immersion in G(Hn). As a consequence of the geometry of

the hyperbolic space Hn, an oriented geodesic in Hn is characterized, up to orientation

preserving reparametrization, by the ordered pair of its “endpoints” in the visual boundary

∂Hn: this gives an identification G(Hn) ∼= ∂Hn × ∂Hn \∆. Under this identification the
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Gauss map Gσ of an immersion σ : M → Hn corresponds to a pair of hyperbolic Gauss

maps G±σ : M → ∂Hn.

As already mentioned before, the works of Uhlenbeck [Uhl83] and Epstein [Eps84,

Eps86, Eps87] highlighted the relevance of hypersurfaces satisfying the geometric condi-

tion for which principal curvatures are everywhere different from ±1, sometimes called

horospherically convexity : this is the condition that ensures that the hyperbolic Gauss

maps G±σ are locally invertible. Epstein’ description “from infinity” of horospherically con-

vex hypersurfaces as envelopes of horospheres has been later developed by many authors

by means of analytic techniques, see for instance [Sch02, IdCR06, KS08], and permitted

to obtain remarkable classification results often under the assumption that the principal

curvatures are larger than 1 in absolute value ([Cur89, AC90, AC93, EGM09, BEQ10,

BEQ15, BQZ17, BMQ18]).

1.4.2 Integrability of immersions in G(Hn)

The first goal of [EES22a] was to discuss when an immersion G : Mn → G(Hn+1) is

integrable, namely when it is the Gauss map of an immersion M → Hn+1, in terms of

the geometry of G(Hn+1). We distinguished three types of integrability conditions, which

we list from the weakest to the strongest:

• An immersion G : M → G(Hn+1) is locally integrable if for all p ∈ M there exists a

neighbourhood U of p such that G|U is the Gauss map of an immersion U → Hn+1;

• An immersion G : M → G(Hn+1) is globally integrable if it is the Gauss map of an

immersion M → Hn+1;

• Given a representation ρ : π1(M)→ Isom(Hn+1), a ρ-equivariant immersionG : M̃ →
G(Hn+1) is ρ-integrable if it is the Gauss map of a ρ-equivariant immersion M̃ →
Hn+1.

Since the definition of Gauss map requires to fix an orientation on M , the above three

definitions of integrability have to be interpreted as: “there exists an orientation on U (in

the first case) or M (in the other two) such that G is the Gauss map of an immersion in

Hn+1 with respect to that orientation”. We restrict to immersions σ with small principal

curvatures, which is equivalent to the condition that the Gauss map Gσ is Riemannian,

meaning that the pull-back by Gσ of the ambient pseudo-Riemannian metric of G(Hn+1)

is positive definite, hence a Riemannian metric.

Local integrability As it was essentially observed in [Anc14, Theorem 2.10], local inte-

grability admits a very simple characterization in terms of the symplectic geometry of

G(Hn+1).

Theorem 1.4.1. Let Mn be a manifold and G : M → G(Hn+1) be an immersion. Then G

is locally integrable if and only if it is Lagrangian.
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Theorem 1.4.1 can be reinterpreted in a different set-up with respect to that of [Anc14],

as follows. Let us denote by T 1Hn+1 the unit tangent bundle of Hn+1 and by

p: T 1Hn+1 → G(Hn+1) , (1.2)

the map such that p(x, v) is the oriented geodesic of Hn+1 tangent to v at x. Then, if G

is Lagrangian, we proved that one can locally construct maps ζ : U → T 1Hn+1 (for U a

simply connected open set) such that p ◦ ζ = G. Up to restricting the domain again, one

can find such a ζ so that it projects to an immersion σ in Hn+1 , and the Gauss map of

σ is G by construction. The next results provide characterizations of global integrability

and ρ-integrability under the assumption of small principal curvatures.

Global integrability The problem of global integrability is in general more subtle than

local integrability. As a matter of fact, one can construct an example of a locally integrable

immersion G : (−T, T ) → G(H2) that is not globally integrable. By taking a cylinder on

this curve, one easily sees that the same phenomenon occurs in any dimension. In such

example, M = (−T, T ) (or the product (−T, T )×Rn−1 for n > 2) is simply connected: the

key point is that one can find globally defined maps ζ : M → T 1Hn+1 such that G = p◦ ζ,

but no such ζ projects to an immersion in Hn+1.

Nevertheless, we show that this issue does not occur for Riemannian immersions G.

In this case any immersion σ whose Gauss map is G (if it exists) necessarily has small

principal curvatures. We will always restrict to this setting hereafter. In summary, we

obtained the following characterization of global integrability for M simply connected:

Theorem 1.4.2. Let Mn be a simply connected manifold and G : M → G(Hn+1) be a Rie-

mannian immersion. Then G is globally integrable if and only if it is Lagrangian.

We give a characterization of global integrability for π1(M) 6= {1} in Corollary 1.4.5,

which is a direct consequence of our first characterization of ρ-integrability (Theorem

1.4.4). Before that, we remark that if a Riemannian and Lagrangian immersion G : M →
G(Hn+1) is also complete (i.e. has complete first fundamental form), then M is necessarily

simply connected:

Theorem 1.4.3. Let Mn be a manifold. If G : M → G(Hn+1) is a complete Riemannian

and Lagrangian immersion, then M is diffeomorphic to Rn and G is the Gauss map of a

proper embedding σ : M → Hn+1.

ρ-integrability Let us first observe that the problem of ρ-integrability presents some addi-

tional difficulties than global integrability. Assume G : M̃ → G(Hn+1) is a Lagrangian, Rie-

mannian and ρ-equivariant immersion for some representation ρ : π1(Mn)→ Isom(Hn+1).

Then, by Theorem 1.4.2, there exists σ : M̃ → Hn+1 with Gauss map G, but the main

issue is that such a σ will not be ρ-equivariant in general.
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Nevertheless, ρ-integrability of Riemannian immersions into G(Hn+1) can still be char-

acterized in terms of their extrinsic geometry. Let H be the mean curvature vector of

G, defined as the trace of the second fundamental form, and Ω the symplectic form of

G(Hn+1). Since G is ρ-equivariant, the 1-form G∗(Ω(H, ·)) on M̃ is invariant under the

action of π1(M), so it descends to a 1-form on M . One can prove that such 1-form on M

is closed: we will denote its cohomology class in H1
dR(M,R) with µG and we will call it the

Maslov class of G, in accordance with some related interpretations of the Maslov class in

other geometric contexts (see among others [Mor81, Oh94, Ars00, Smo02]). The Maslov

class encodes the existence of equivariantly integrating immersions, in the sense stated in

the following theorem.

Theorem 1.4.4. Let Mn be an orientable manifold, ρ : π1(M)→ Isom(Hn+1) be a represen-

tation and G : M̃ → G(Hn+1) be a ρ-equivariant Riemannian and Lagrangian immersion.

Then G is ρ-integrable if and only if the Maslov class µG vanishes.

Applying Theorem 1.4.4 to a trivial representation, we immediately obtain a character-

ization of global integrability for Riemannian immersions, thus extending Theorem 1.4.2

to the case π1(M) 6= {1}.

Corollary 1.4.5. Let Mn be an orientable manifold and G : M → G(Hn+1) be a Riemannian

and Lagrangian immersion. Then G is globally integrable if and only if its Maslov class

µG vanishes.

1.4.3 Nearly-Fuchsian representations

Let us now focus on the case of M a closed oriented manifold. We say that a representa-

tion ρ : π1(M)→ Isom(Hn+1) is nearly-Fuchsian if there exists a ρ-equivariant immersion

σ : M̃ → Hn+1 with small principal curvatures. We showed that the action of a nearly-

Fuchsian representation on Hn+1 is free, properly discontinuously and convex cocompact;

the quotient of Hn+1 by ρ(π1(M)) is called (extending the classical terminology to any

dimensions) nearly-Fuchsian manifold.

Moreover, the action of ρ(π1(M)) extends to a free and properly discontinuous action

on the complement of a topological (n − 1)-sphere Λρ (the limit set of ρ) in the visual

boundary ∂Hn+1. Such complement is the disjoint union of two topological n-discs which

we denote by Ω+ and Ω−. It follows that there exists a maximal open region of G(Hn+1)

over which a nearly-Fuchsian representation ρ acts freely and properly discontinuously.

This region is defined as the subset of G(Hn+1) consisting of oriented geodesics having

either final endpoint in Ω+ or initial endpoint in Ω−. The quotient of this open region via

the action of ρ, that we denote with Gρ, inherits a para-Kähler structure.

Let us first state a uniqueness result concerning nearly-Fuchsian representations. A

consequence of Theorem 1.4.4 and the definition of Maslov class is that if G is a ρ-

equivariant, Riemannian and Lagrangian immersion which is furthermore minimal, i.e.
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with H = 0, then it is ρ-integrable. Together with an application of a maximum principle

in the corresponding nearly-Fuchsian manifold, we proved:

Corollary 1.4.6. Given a closed orientable manifold Mn and a representation ρ : π1(M)→
Isom(Hn+1), there exists at most one ρ-equivariant Riemannian minimal Lagrangian im-

mersion G : M̃ → G(Hn+1) up to reparametrization. If such a G exists, then ρ is nearly-

Fuchsian and G induces a minimal Lagrangian embedding of M in Gρ.

In fact, for any ρ-equivariant immersion σ : M̃ → Hn+1 with small principal curvatures,

the hyperbolic Gauss mapsG±σ are equivariant diffeomorphisms between M̃ and Ω±. Hence

up to changing the orientation of M , which corresponds to swapping the two factors ∂Hn+1

in the identification G(Hn+1) ∼= ∂Hn+1 × ∂Hn+1 \∆, the Gauss map of σ takes values in

the maximal open region defined above, and induces an embedding of M in Gρ.
This observation permits to deal (in the cocompact case) with embeddings in Gρ instead

of ρ-equivariant embeddings in G(Hn+1). In analogy with the definition of ρ-integrability

defined above, we will say that a n-dimensional submanifold L ⊂ Gρ is ρ-integrable if

it is the image in the quotient of a ρ-integrable embedding in G(Hn+1). Clearly such

L is necessarily Lagrangian by Theorem 1.4.1. We are now ready to state our second

characterization result for ρ-integrability .

Theorem 1.4.7. Let M be a closed orientable n-manifold, ρ : π1(M) → Isom(Hn+1) be a

nearly-Fuchsian representation and L ⊂ Gρ a Riemannian ρ-integrable submanifold. Then

a Riemannian submanifold L′ is ρ-integrable if and only if there exists Φ ∈ Hamc(Gρ,Ω)

such that Φ(L) = L′.

In Theorem 1.4.7 we denoted by Hamc(Gρ,Ω) the group of compactly-supported Hamil-

tonian symplectomorphisms of Gρ with respect to its symplectic form Ω. The proof of

Theorem 1.4.7 in fact shows that if L is ρ-integrable and L′ = Φ(L) for Φ ∈ Hamc(Gρ,Ω),

then L′ is integrable as well, even without the hypothesis that L and L′ are Riemannian

submanifolds.

If ρ admits an equivariant Riemannian minimal Lagrangian immersion, then Theo-

rem 1.4.7 can be restated by saying that a Riemannian and Lagrangian submanifold L′

is ρ-integrable if and only if it is in the Hamc(Gρ,Ω)-orbit of the minimal Lagrangian

submanifold L ⊂ Gρ, which is unique by Theorem 1.4.6.

1.4.4 Relation with geometric flows and Andrew’s conjecture

Finally, this approach highlights the relation between evolutions by geometric flows in Hn+1

and in G(Hn+1). More precisely, suppose that σ• : M × (−ε, ε) → Hn+1 is a smoothly

varying family of Riemannian immersions that satisfy:

d

dt
σt = ftνt
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where νt is the normal vector of σt and f• : M × (−ε, ε) → R is a smooth function.

Then the variation of the Gauss map Gt of σt is given, up to a tangential term, by the

normal term −J(dGt(∇tft)), where ∇tft denotes the gradient with respect to the first

fundamental form of Gt, that is, the Riemannian metric G∗tG.

Let us now consider the special case of the function ft := fσt defined as the sum of

arctanh(λi), where λi are the principal curvatures of σt. The study of the associated

flow has been suggested in dimension three in [And02b], by analogy of a similar flow on

surfaces in the three-sphere. By the results of [EES22a], we obtain that such flow in Hn+1

induces the Lagrangian mean curvature flow in G(Hn+1) up to tangential diffeomorphisms.

A similar approach has been developed in Anti-de Sitter space (in dimension three) in

[Smo13].

In conclusion, the framework of the geometry of the space of geodesics of the hyperbolic

space Hn+1, when applied to n = 2, suggests a possible strategy towards the Andrew’s

conjecture as follows. Starting from a nearly-Fuchsian immersion in a quasi-Fuchsian man-

ifold H3/ρ(π1(S)) homeomorphic to S × R, one can consider the associated ρ-equivariant

immersion of S̃ via the Gauss map construction, into the space G(H3) of geodesics of H3.

Such immersion is Riemannian and Lagrangian, and its Maslov class vanishes (Theorem

1.4.4). One could then try to apply the Lagrangian mean curvature flow. In this context,

the main goal is to show the long-term convergence of such Lagrangian mean curvature

flow, with the remarkable difficulty of ensuring that the evolution by Lagrangian mean

curvature flow consists, at every time, of Riemannian submanifolds. If this is the case,

then one would obtain in the limit a Riemannian and Lagrangian ρ-equivariant minimal

immersion, whose Maslov class, by definition, vanishes automatically. Hence, by Theorem

1.4.4 again, such minimal Lagrangian immersion would automatically correspond to a min-

imal immersion in H3/ρ(π1(S)) with small principal curvature, thus providing a positive

answer to Andrew’s conjecture.
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Euclidean geometry

The aim of this section is to introduce minimal Lagrangian maps between Riemannian

surfaces of constant curvature, which play an important role in several chapters of this

manuscript. They are deeply related with many three-dimensional geometries. In [EES22b]

we explored their connection with surfaces of constant Gaussian curvature in Euclidean

three-space, and we will outline how this relation can be exploited in two directions: on

the one hand, one can use Euclidean geometry in order to obtain results on the study of

minimal Lagrangian maps (in this case, in constant positive curvature, see Section 2.2);

on the other, minimal Lagrangian maps serve to provide information on classical problems

on the differential geometry of surfaces in R3 (Section 2.3). In Chapters 5 and 6 we will

see several other instances of both directions, in that case by using the connection be-

tween minimal Lagrangian maps on surfaces of constant negative curvature, and surfaces

in Lorentzian geometries of constant sectional curvature.

2.1 The ubiquitous minimal Lagrangian maps

Let us start with an interlude on hyperbolic surfaces and Teichmüller theory, which will ap-

pear again in Chapters 5 and 6. Minimal Lagrangian maps have played an important role

in the study of hyperbolic surfaces. As observed independently by Labourie [Lab92] and

Schoen [Sch93], given two closed hyperbolic surfaces (Σ1, h1) and (Σ2, h2), there exists a

unique minimal Lagrangian diffeomorphism in the homotopy class of every diffeomorphism

Σ1 → Σ2. See also [Lee94] and [TV95, Smi20] for extensions of this result. Alternative

proofs have been provided later, in the context of Anti-de Sitter three-dimensional geome-

try (see [BBZ07] and [BS20, §7]), and using higher codimension mean curvature flow (see

[Wan01] and [LS11]). Using Anti-de Sitter geometry, the result of Labourie and Schoen

has been generalized in various directions: in [BS10] in the setting of universal Teichmüller

space; in [Tou16] for closed hyperbolic surfaces with cone singularities of angles in (0, π),

provided the diffeomorphism Σ1 → Σ2 maps cone points to cone points of the same angles.

Toulisse then proved in [Tou19] the existence of minimal maps between closed hyperbolic

32
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surface of different cone angles, by purely analytic methods. We remark that interesting

results in a similar spirit have been obtained for minimal Lagrangian diffeomorphisms

between bounded domains in the Euclidean plane ([Del91, Wol97]) and in a complete

non-positively curved Riemannian surface ([Bre08]).

Minimal Lagrangian maps are very often associated to immersions of surfaces in three-

manifolds. The main observation used in [EES22b] is that minimal Lagrangian maps

between two spherical surfaces (i.e. of constant Gaussian curvature +1) are precisely

those that can be realized locally as the Gauss map of a surface of constant Gaussian

curvature +1 in Euclidean space, with values in the unit sphere. The version of this fact

in negative curvature is the realizability of minimal Lagrangian maps between hyperbolic

surfaces as the Gauss maps of surfaces of curvature −1 in Minkowski space, with values

in the unit hyperboloid (namely, a copy of the hyperbolic plane H2) — a fact which will

be largely used in Chapter 6. Minimal Lagrangian maps between spherical surfaces (resp.

hyperbolic surfaces) can also be associated to minimal surfaces in S3 (resp. maximal

surfaces in AdS3, see Chapter 5). This is essentially a manifestation of the so-called

Lawson correspondence that associates to a CMC surface in R3 to a minimal surface in

S3, and an equidistance surface construction that provides a constant Gaussian curvature

surface from a CMC surface in R3 — and the analogous versions of these correspondences

in Lorentzian geometry, connecting surfaces in Minkowski and Anti-de Sitter geometry.

2.2 The “classical” Gauss map and spherical surfaces

Spherical metrics with cone singularities on a closed surfaces have been studied in [Tro86,

McO88, Tro89, Tro91, LT92]. Very recently the works [MP16, MP19, EMP20], by geo-

metric methods, and [MW17, MZ20, MZ19], by analytic methods, developed the study of

the deformations spaces of spherical cone metric, highlighting their complexity. It thus

seems a natural question to ask whether one can find a minimal Lagrangian diffeomor-

phism between two spherical cone surfaces. In [EES22b] we answered negatively to this

question, without any assumption on the cone angles. We showed that two spherical cone

surfaces do not admit any minimal Lagrangian diffeomorphism unless they are isometric.

When they are isometric, the only minimal Lagrangian diffeomorphisms are isometries.

We summarize these statements as follows:

Theorem 2.2.1. Given two closed spherical cone surfaces (Σ1, p1, g1) and (Σ2, p2, g2), any

minimal Lagrangian diffeomorphism ϕ : (Σ1, p1, g1)→ (Σ2, p2, g2) is an isometry.

We remark that a minimal Lagrangian diffeomorphism ϕ is defined as a smooth dif-

feomorphism between Σ1 \ p1 and Σ2 \ p2 that extends continuously to the sets of cone

points, denoted p1 and p2. A priori, we do not assume that such a smooth map extends

smoothly to the cone points.
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The idea behind the proof of Theorem 2.2.1 is quite simple, and we provide an outline

here. A map ϕ : (Σ1, p1, g1) → (Σ2, p2, g2) is minimal Lagrangian if it is area-preserving

and its graph (restricted to the nonsingular locus) is minimal in the product Σ1 × Σ2. A

useful characterization is that one can express (on the nonsingular locus) ϕ∗g2 = g1(b·, b·)
for b a (1,1) tensor which is self-adjoint with respect to g1, positive definite, and satisfies

the conditions d∇
g1b = 0 and det b = 1. From this characterization, one can prove, as

mentioned above, that minimal Lagrangian maps are those that can be locally realized as

the Gauss maps of surfaces of constant Gaussian curvature one in Euclidean three-space,

as a consequence of the Gauss-Codazzi equations.

Starting by this characterization, using the spherical metric g1 and the (1,1) tensor b,

we produce a pair (G,B) where G is a Riemannian metric on Σ1 and B a (1,1) G-self-

adjoint traceless tensor, satisfying the equations

d∇
G
B = 0 and KG = 1 + detB .

Although we will not use spherical three-dimensional geometry in this paper, we remark

that these are precisely the Gauss-Codazzi equations for a surface in S3, which is minimal

since B is traceless. Equivalently, by the Lawson correspondence, the pair (G,1 + B)

satisfies the Gauss-Codazzi equations for a surface of constant mean curvature one in R3.

Such constant mean curvature surface is realized (at least locally) as the parallel surface

from the surface of constant Gaussian curvature mentioned above, which is determined

by the pair (g1, b). Assuming ϕ : (Σ1, p1, g1) → (Σ2, p2, g2) is a minimal Lagrangian

diffeomorphism, the goal of the proof is to show that B vanishes identically, which is

equivalent to ϕ being an isometry.

For this purpose, assuming by contradiction that B does not vanish identically, the

next step consists in computing the Laplace-Beltrami operator of the function χ defined,

in the complement of the zeros of B, as the logarithm of the positive eigenvalue of B (up

to a certain constant). It turns out that ∆Gχ equals the curvature of the metric G, which

is positive, hence χ is subharmonic and negative and the contradiction is then obtained

by an application of the maximum principle.

However, it is essential to prove that the metricG has the conformal type of a punctured

disc in a neighbourhood of every cone point of Σ1. This would be automatically satisfied

assuming some additional regularity on the minimal Lagrangian map ϕ: for instance, if ϕ

is supposed quasiconformal, which is equivalent to boundedness of the (1,1) tensor b, then

g1 and G are quasiconformal, and therefore both g1 and G have the conformal type of a

punctured disc near the cone points. But, as we mentioned above, in our Theorem 2.2.1

we assume a weaker regularity on ϕ at the cone points, namely we only suppose that ϕ is

continuous.

To prove that G has the conformal type of a punctured disc around the cone points,

we apply the interpretation in terms of surfaces in Euclidean space, and we show that G
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can be realized in a punctured neighbourhood U∗ of any cone point as the metric induced

by the first fundamental form of an equivariant immersion of Ũ∗ in R3. We also prove that

the normal vector of the equivariant immersion admits a limit, and the vertical projection

induced a bi-Lipschitz equivalence between G and a flat metric on U∗. A complex analytic

argument, based on Schwarz Reflection Principle, shows that this flat metric has the

conformal type of D∗ at the puncture, and this implies that G has the conformal type of

D∗ as well.

A possible generalization of Theorem 2.2.1 would concern the rigidity of the so-called

θ-landslides, a larger class of maps (inspired by their hyperbolic counterpart, discussed in

Chapter 5) depending on the value of a real parameter θ, for which minimal Lagrangian

maps represent a special case. In this direction, instead of surfaces of constant Gaussian

curvature in Euclidean space, one would need to use the alternative interpretation of

minimal Lagrangian maps as associated to minimal surfaces in S3. The θ-landslides then

correspond to surfaces of constant mean curvature H in S3, for a given value of H (which

depends on the parameter θ). My PhD students Farid Diaf and Enrico Trebeschi are

currently working jointly on this problem.

2.3 A Liebmann type theorem

Going back to Euclidean geometry, Theorem 2.2.1 has a direct application for branched

immersions of constant Gaussian curvature in Euclidean three-space, generalizing the clas-

sical Liebmann’s theorem which states that every closed immersed surface of positive con-

stant Gaussian curvature in Euclidean space is a round sphere.

In [GHM13], Gálvez, Hauswirth and Mira classified the isolated singularities of surfaces

of constant Gaussian curvature. According to their definition, isolated singularities of an

immersion σ : U \{p} → R3, for U a disc, are those that extend continuously on U . Among

these, they considered extendable singularities, namely those for which the normal vector

extends smoothly at p, and showed that they are either removable, meaning that they

extend to an immersion of U , or branch points, meaning that the Gauss map is locally

expressed as the map z 7→ zk with respect to some coordinates on U and on S2. Here we

show a rigidity result for branched immersions of closed surfaces:

Corollary 2.3.1. Every branched immersion in Euclidean three-space of a closed surface of

constant positive Gaussian curvature is a branched covering onto a round sphere.

As we mentioned, Corollary 2.3.1 can be regarded as a generalization of Liebmann’s

theorem, which we indeed recovered by an independent proof when the immersion has no

branch points. Roughly speaking, we proved Corollary 2.3.1 by applying Theorem 2.2.1 to

the Gauss map of a branched immersion σ : Σ→ R3, which induces a minimal Lagrangian

self-diffeomorphism of Σ with respect to the first and third fundamental form, both of

which are spherical cone metrics.
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Finally, we remark that the hypothesis that the surface Σ is closed is essential in

Corollary 2.3.1, as well as the closedness of Σ1 and Σ2 in Theorem 2.2.1. Indeed one can

find local deformations of spheres of constant Gaussian curvature, with branch points (see

[Bra16] for many examples) or without (for instance by surfaces of revolution); their Gauss

maps provide non-isometric minimal Lagrangian diffeomorphisms between open spherical

surfaces (with or without cone points).



Chapter 3

First topological interlude: Seifert

fibrations

This chapter will focus on geometric structures on three-dimensional manifolds and orb-

ifolds, with a more topological flavour. Smooth orbifolds are topological spaces that are

locally homeomorphic to quotients of Rn by the action of a finite group G, and they are

therefore a natural generalization of smooth manifolds, allowing the presence of singular

points corresponding to the fixed points of the action of G. Smooth orbifolds can be nat-

urally constructed as quotients of a smooth manifold by a properly discontinuous action.

An orbifold is called good if it can be obtained as such a global quotient, and bad otherwise.

In dimension three, a smooth orbifold is called geometric if it is locally modelled on one

of the eight Thurston’s geometries. Closed geometric orbifolds are always good orbifolds.

They played a fundamental role, among many things, in the Orbifold Geometrization

Theorem proved in [BLP05] (see also [CHK00] and [BMP03]).

3.1 The multiple fibration problem

The topology of closed geometric orbifolds, whose geometry is one among R3, S3, H2×R,

S2×R, Nil or S̃L2, is studied very effectively via the notion of Seifert fibration for orbifold,

a generalization of the classical definition of Seifert fibration for manifolds, where the fibres

are allowed to be either circles or intervals. Fibres homeomorphic to circles are entirely

contained either in the singular locus of the orbifold or in its complement, the regular

locus. Those homeomorphic to intervals, instead, are in the regular locus except for the

endpoints, which always lie in the singular locus.

Seifert fibred orbifolds are uniquely determined, up to diffeomorphisms that preserve

the orientation and the fibration, by a collection of invariants, which consists of a base (a 2-

dimensional orbifold B, whose underlying topological space is a 2-manifold with boundary)

and several rational numbers: the local invariants associated to every cone and corner point

of B, the boundary invariants associated to every boundary component of the underlying

37
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topological space of B, and a global Euler number.

From this perspective, closed geometric orbifolds can be classified via the collection of

invariants of their Seifert fibration, with a single major difficulty: the same smooth orbifold

may admit several Seifert fibrations which are not equivalent, where two Seifert fibrations

of a 3-orbifold O are equivalent if there exists an orientation-preserving diffeomorphism of

O mapping one to the other (or equivalently, they have the same collection of invariants).

In the articles [MS20] and [MMS23] we provided a conclusion of what we call the

multiple fibration problem, namely, determining which closed orientable geometric orbifolds

admit several inequivalent Seifert fibrations, and what are those fibrations. A reduction

of the problem is provided by a result proved in [BMP03]: given be a compact orientable

Seifert fibred good 3-orbifold O (possibly with boundary) with infinite fundamental group,

if O is not covered by S2 × R, T 3 or T 2 × I then the Seifert fibration on O is unique up

to isotopy.

A closed orientable good 3-orbifold has finite fundamental group if and only if it is

geometric with geometry S3. Moreover, by Bieberbach Theorem, closed flat 3-orbifolds

are covered by T 3. As a consequence, for closed orbifolds, the above fact implies that, if a

closed orientable Seifert fibred 3-orbifold O admits several inequivalent Seifert fibrations,

then it is either geometric with geometry S3, R3 or S2 × R, or bad.

3.2 Euclidean geometry continued: crystallographic groups

Let us first consider orbifolds endowed with Euclidean geometry. Closed orbifolds with

geometry R3 (which we will call flat in the following) are obtained as the quotients R3/Γ,

where Γ is a space group, that is, a crystallographic group of dimension three. The study

of the Seifert fibrations of closed flat three-orbifolds has been tackled in [CDFHT01] (in-

cluding the non-orientable case, which we did not consider).

In particular, for closed flat orbifolds Conway, Delgado-Friedrichs, Huson and Thurston

solved the multiple fibration problem, which is called alias problem in their work, since

a compact notation (a “name”) is used to denote Seifert fibrations, and a given orbifold

may have several “names”. However, in [CDFHT01] a computer-assisted method is used to

solve the problem. That method is based on a consequence of Bieberbach Theorem, namely

the fact that two closed flat orbifolds are diffeomorphic if and only if their fundamental

groups are isomorphic; hence an algorithm can be used to determine whether two orbifolds,

expressed in terms of their Seifert fibrations, have isomorphic fundamental groups.

The first result that we obtained in [MMS23] is the following theorem, which recovers

the results of [CDFHT01] by a direct proof, based on geometric and topological arguments.

In the table, Seifert fibred orbifolds are denoted by a string containing their base orbifold,

the local invariants associated to each cone point, the local invariants associated to each

corner point, the boundary invariants, and the Euler number.
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Theorem 3.2.1. A closed orientable flat Seifert 3-orbifold has a unique Seifert fibration up

to equivalence, with the exceptions contained in the following table:

(S2(2, 2, 2, 2); 0/2, 0/2, 0/2, 0/2; 0) (S1 × I; ; ; ; 0; 0; 0)

(S2(2, 2, 2, 2); 0/2, 0/2, 1/2, 1/2; 0) (S1 × I; ; ; ; 0; 1; 1) (Mb; ; ; 0; 0)

(S2(2, 2, 2, 2); 1/2, 1/2, 1/2, 1/2; 0) (Kb; ; 0)

(D2(2, 2; ); 0/2, 0/2; ; 0; 0) (D2(; 2, 2, 2, 2); ; 1/2, 1/2, 1/2, 1/2; 0; 0)

(D2(2, 2; ); 0/2, 1/2; ; 0; 1) (D2(2; 2, 2); 1/2; 1/2, 1/2; 0; 0)

(D2(2, 2; ); 1/2, 1/2; ; 0; 0) (RP 2(2, 2); 0/2, 0/2; 0)

(D2(2; 2, 2); 0/2; 0/2, 0/2; 0; 0) (D2(; 2, 2, 2, 2); ; 0/2, 0/2, 1/2, 1/2; 0; 1)

Two Seifert fibred orbifolds in the table are orientation-preserving diffeomorphic if and

only if they appear in the same line. In particular, seven flat Seifert 3-orbifolds admit

several inequivalent fibrations; six of those have exactly two inequivalent fibrations and

one has three.

In the table, Mb is the Möbius band and Kb is the Klein bottle.

Let us now outline discuss some of the ideas in the proofs of Theorem 3.2.1, which

are partially similar to those employed to prove Theorem 3.3.1 below, concerning S2 × R
geometry.

A general method to construct Seifert fibration on an orbifold with geometry R3 (or

S2×R) is the following. Consider a discrete subgroup of Isom(R3) (or Isom(S2)×Isom(R),

with compact quotient O. The fibration of R3 (or S2 × R) given by the parallel lines

{pt} × R then induces a Seifert fibration of O. By construction, the base 2-orbifold of

this fibration of O is a quotient of R2 (or S2), and the Euler number vanishes. These are

actually known to be necessary condition: every Seifert fibration of a closed orientable

orbifold with geometry R3 (resp. S2 × R) has flat (resp. spherical) base and vanishing

Euler number. More importantly, we prove that the converse holds true: every Seifert

fibration of a closed orientable orbifold with vanishing Euler number and flat or spherical

base orbifold is equivalent to one obtained by the above construction.

From now one, the argument becomes peculiar of Euclidean geometry. Indeed, by

Bieberbach Theorem, two flat orbifolds R3/Γ1 and R3/Γ2 are diffeomorphic if and only if

the space groups Γ1 and Γ2 are conjugate by an affine transformation, which in particular

sends families of parallel lines to families of parallel lines. Since by every Seifert fibration

of a closed flat orientable orbifold O is induced by a family of parallel lines of R3, the

proof of Theorem 3.2.1 essentially consists in a careful analysis of the different families of

parallel lines of R3 that a space group Γ < Isom(R3) may preserve.
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3.3 S2 × R geometry

Let us now move on to the geometry S2 ×R. The following theorem provides the classifi-

cation of multiple fibrations of closed orientable orbifolds with geometry S2 × R:

Theorem 3.3.1. A closed orientable Seifert 3-orbifold with geometry S2 × R has a unique

Seifert fibration up to equivalence, with the exceptions contained in the following table:

for

(S2(d, d); 0/d; 0/d; 0) (S2(n, n);m/n; (n−m)/n; 0) n ≥ 1 and 1 ≤ m ≤ n− 1

where d = gcd(n,m)

(D2(; d, d); 0/d; 0/d; ; 0; 0) (D2(;n, n);m/n; (n−m)/n; ; 1; 0) n ≥ 1 and 1 ≤ m ≤ n− 1

where d = gcd(n,m)

Two Seifert fibred orbifolds in the table are orientation-preserving diffeomorphic if and

only if they appear in the same line, with d = gcd(n,m).

Let us explain how to visualize the two inequivalent fibrations of the first line in the

following example. The orbifold O admitting multiple fibrations in the first line of the

table in Theorem 3.3.1 has underlying space S2 × S1. Seeing S2 × S1 as the union of two

solid tori T1 and T2 glued by a diffeomorphism of their boundaries sending a meridian of

T1 to a meridian of T2, the singular locus consists of the two cores of T1 and T2, both

with singularity index d. The orbifold O can be obtained as the quotient of S2×R by the

group Γ of isometries generated by a pure translation in the R direction (with translation

length, say, equal to one) and a pure rotation in S2 of order d. The fibration in vertical

lines of S2 × R then induces the first fibration (S2(d, d); 0/d; 0/d; 0) of the quotient. To

obtain other fibrations, we can consider the group Γ′ generated by Γ and by an isometry

that acts simultaneously on S2 as a rotation of order n, and on R as a translation of length

1/n. The quotient (S2×R)/Γ′ has again the same diffeomorphism type, and the fibration

in vertical lines of S2 × R now induces the other fibration (S2(n, n);m/n; (n −m)/n; 0).

The orbifolds in the second line have underlying topological space S3, and are obtained

as a double quotient of the ones described above.

Unlike in R3, in the geometry S2 × R there is no notion of “affine transformation”,

and there is a “privileged” direction, namely the vertical direction, which is preserved

by the isometry group. One might be tempted to conjecture, in analogy with Bieberbach

Theorem, that (S2×R)/Γ1 and (S2×R)/Γ2 are diffeomorphic (for Γ1 < Isom(S2)×Isom(R))

if and only if Γ1 and Γ2 are conjugate by a transformation acting by isometries on S2 and by

affine transformations on R. This statement is false: indeed, it would imply the uniqueness

of the Seifert fibration for geometry S2 × R. In a certain sense, Theorem 3.3.1 describes

the failure of an analogue of Bieberbach Theorem for S2 × R. Its proof shows that the

orbifold O in the example above, together with a 2-to-1 quotient of O itself, is the only

situation where two discrete groups of isometries induce the same diffeomorphism type in
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the quotient, but the vertical fibration of S2×R gives rise to inequivalent fibrations in the

quotient.

To conclude this section, the analysis of bad orbifolds has similarities to the situation

of the geometry S2 × R.

Theorem 3.3.2. A closed orientable Seifert bad 3-orbifold admits infinitely many non-

equivalent Seifert fibrations. More precisely, two bad Seifert fibred orbifolds are orientation-

preserving diffeomorphic if and only if they appear in the same line of the following table

(for c 6= d):

for

(S2(c, d); 0/c; 0/d; 0) (S2(cν, dν); cµ/cν; d(ν − µ)/dν; 0) ν ≥ 1 and 1 ≤ µ ≤ ν − 1

where gcd(µ, ν) = 1, c 6= d

(D2(; c, d); 0/c; 0/d; 0; 0) (D2(cν, dν); cµ/cν; d(ν − µ)/dν; 1; 0) ν ≥ 1 and 1 ≤ µ ≤ ν − 1

where gcd(µ, ν) = 1, c 6= d

3.4 Spherical orbifolds

Finally, let us consider orbifolds with geometry S3. The presentation of all possibile

diffeomorphisms, which are studied in [MS19], is rather technical and difficult to summarize

it in a single statement. The following statement provides a description of the number of

possible fibrations.

Theorem 3.4.1. Let O be a closed spherical Seifert fibered 3-orbifold with base orbifold B
and b an integer greater than one.

1. If B ∼= S2(2, 2, b), D2(b), RP 2(b), D2(2; b) or D2(; 2, 2, b) then O admits two inequiv-

alent fibrations with the following exceptions:

•
(
S2(2, 2, b); 0

2 ,
0
2 ,±

2
b ; ∓

2
b

)
,
(
S2(2, 2, b); 0

2 ,
1
2 ,±

1+b/2
b ; ∓1

b

)
with b even,(

D2(2; );± b
2 ; ;∓ b

2 ; 0
)
,
(
D2(2; b); 1

2 ; ±1
b ; ∓

1
2b ; 1

)
and

(
D2(; 2, 2, b); ; 1

2 ,
1
2 ,±

1
b ; ∓

1
2b ; 1

)
which admit three fibrations;

•
(
S2(2, 2, b); 0

2 ,
0
2 ,±

1
b ; ∓

1
b

)
,
(
S2(2, 2, b); 0

2 ,
1
2 ,±

(1+b)/2
b ; ∓ 1

2b

)
with b odd,(

D2(b; );±1
b ; ;∓1

b ; 0
)
,
(
D2(b; );± (1+b)/2

b ; ;∓ 1
2b ; 1

)
with b odd,

(
RP 2(b);±1

b ;∓
1
b

)
,(

D2(2; b); 0
2 ; ±1

b ; ∓
1
2b ; 1

)
with b even,

(
D2(; 2, 2, b); ; 0

2 ,
0
2 ,±

1
b ; ∓

1
2b ; 0

)
with b

odd

and
(
D2(; 2, 2, b); ; 0

2 ,
1
2 ,±

(b+1)/2
b ; ∓ 1

4b ; 1
)

with b odd which admit infinitely many

fibrations.

2. If B ∼= S2(2, 3, b) or D2(; 2, 3, b) with b = 3, 4, 5 then O admits a unique fibration

with the following exceptions:
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•
(
S2(2, 3, 3) ; 0

2 ,±
2
3 ,±

2
3 ;∓1

3

)
,
(
S2(2, 3, 4) ; 0

2 ,±
2
3 ,±

2
4 ;∓1

6

)
,(

S2(2, 3, 4) ; 0
2 ,±

1
3 ,±

3
4 ;∓ 1

12

)
,
(
S2(2, 3, 5) ; 0

2 ,±
2
3 ,±

2
5 ;∓ 1

15

)
,(

D2(; 2, 3, 3) ; ; 1
2 ,±

1
3 ,±

1
3 ;∓ 1

12 ; 1
)
,
(
D2(; 2, 3, 4) ; ; 1

2 ,±
1
3 ,±

1
4 ;∓ 1

24 ; 1
)

and
(
D2(; 2, 3, 5) ; ; 1

2 ,±
1
3 ,±

1
5 ;∓ 1

60 ; 1
)

which admit two fibrations.

3. If B is a 2-sphere with at most two cone points or a 2-disk with at most two corner

points, then O admits infinitely many fibrations.

Let us discuss some topological aspects relating to the theorem. A Seifert fibered 3-

orbifold with base orbifold a 2-sphere with at most two cone points has a lens space as

underlying topological space and the singular set is a subset of the union of the cores of

the two tori giving the lens space; these orbifolds can be considered as the generalization

of lens spaces in the setting of orbifolds. However, we remark that there are Seifert fibered

3-orbifolds with base 2-orbifold different than a sphere with at most two cone points, whose

underlying topological space is still a lens space; when this happens, the singular set does

not entirely consist of a union of fibers. For instance, the other orbifolds in the third case

of Theorem 3.4.1 (whose base 2-orbifold is a 2-disk) can be obtained as a quotient of an

“orbifold lens space” by an involution whose action is not free; in this case the underlying

topological space is always S3, see also [Dun88].

The case B ∼= S2(2, 2, b) contains the classical family of prism manifolds. Prism mani-

folds are known to admit two inequivalent fibrations, the second one with B ∼= RP 2(b), see

[Orl72] or [Hat07, Theorem 2.3]. As a result of this analysis, we also obtain the following

statement in analogy with the situation for spherical Seifert 3-manifolds:

Theorem 3.4.2. If a closed spherical Seifert fibered 3-orbifold admits several inequivalent

fibrations, then its underlying topological space is either a lens space or a prism manifold.

However, unlike the manifold case, this is not a complete characterization of non-

uniqueness, since there are 3-orbifolds with underlying manifold a lens space, whose fibra-

tion is unique up to diffeomorphism.

To conclude the discussion of spherical orbifolds, the methods employed to analyse

fibrations of spherical orbifolds, together with a study of their isometry groups from the

algebraic viewpoint, led in [MS20] to a proof of what is called the π0-part of the Generalized

Smale Conjecture for spherical 3-orbifolds.

To provide the context, a widely studied problem concerning the isometry group of

3-manifolds is the Smale Conjecture, and its stronger version, called Generalized Smale

Conjecture. The latter asserts that the natural inclusion of Isom(M), the group of isome-

tries of a compact spherical 3-manifold M , into Diff(M) (its group of diffeomorphisms)

is a homotopy equivalence. The original version was stated for M = S3 by Smale. The

π0-part of the original conjecture, namely the fact that the natural inclusion induces a bi-

jection on the sets of path components, was proved by Cerf in [Cer68]. The full conjecture

was then proved by Hatcher in [Hat83]. The Generalized Smale Conjecture for spherical
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3-manifolds was proven in many cases, but is still open in full generality [HKMR12]. The

π0-part was instead proved in [McC02]. In [MS20] we proved the π0-part of the analogous

statement for spherical 3-orbifolds, namely:

Theorem 3.4.3. Let O = S3/Γ be a compact spherical oriented orbifold. The inclusion

Isom(O)→ Diff(O) induces a group isomorphism π0Isom(O) ∼= π0Diff(O).

3.5 Some consequences

Finally, let us discuss some consequences of the above results.

A particular consequence of our Theorem 3.2.1 is that closed orbifolds with geometry

R3 admit at most three inequivalent fibrations. From Theorem 3.3.1 (and Theorem 3.3.2),

the same statement does not hold for geometry S2 × R (nor for bad orbifolds), since

the closed orbifolds for which the fibration is not unique (namely, those in the table of

Theorem 3.3.1), admit infinitely many fibrations. Finally, for spherical geometry, Theorem

3.4.1 shows that a closed spherical orbifold may admit either infinitely many fibrations, or

up to three fibrations. By combining these results, an immediate corollary is the following.

Corollary 3.5.1. If a closed Seifert 3-orbifold does not admit infinitely many inequivalent

Seifert fibrations, then it admits at most three inequivalent fibrations.

Second, there results provide a characterization of those closed 3-orbifolds admitting

infinitely many inequivalent Seifert fibrations. Before that, we need to introduce some

definitions.

A lens space is a 3-manifold obtained by glueing two solid tori along their boundaries

by an orientation-reversing diffeomorphism. If we allow cores of tori to be singular curves,

the glueing gives an orbifold whose underlying topological space is a lens space and the

singular set is a clopen subset (possibly empty) of the union of the two cores. We call

these orbifolds lens space orbifolds. Moreover, we call a Montesinos graph a trivalent graph

in S3, which consists of a Montesinos link labelled 2, plus possibly one “strut” for every

rational tangle, namely an interval (with any possible label) whose endpoints lie on the

two connected components of the rational tangle. See [Dun88, Section 4] for a detailed

description.

Corollary 3.5.2. Let O be a closed Seifert fibred 3-orbifold. Then O admits infinitely many

inequivalent fibrations if and only if either it is a lens space orbifold or it has underlying

topological S3 and singular set a Montesinos graph with at most two rational tangles.
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Chapter 4

Pseudo-hyperbolic geometry

In this chapter, we will focus on the study of the pseudo-hyperbolic space Hp,q, which is the

analogue of the hyperbolic space Hn for pseudo-Riemannian metrics of any signature (p, q).

The space Hp,q is defined as the projective space of negative-definite lines inside the pseudo-

Euclidean space Rp,q+1 of signature (p, q + 1). It is a homogeneous pseudo-Riemannian

space of constant sectional curvature equal to −1 and of signature (p, q). When q is equal

to 0 or 1, Hp,q reduces to the hyperbolic space Hp (considered in Chapter 1) and the anti-de

Sitter space Hp,1 = AdSp+1 (that will be treated in Chapter 5) respectively. (Incidentally,

in the proceedings article [ST22] that I co-authored with Enrico Trebeschi, who was at

that time a Master student under my supervision, we developed an alternative model for

pseudo-hyperbolic geometry, generalizing to any dimension and signature the well-known

upper half-space model of hyperbolic geometry.)

As in the hyperbolic and anti-de Sitter cases, Hp,q possesses an asymptotic boundary

∂∞Hp,q, which we identify with the space of isotropic lines in Rp,q+1. The union Hp,q ∪
∂∞Hp,q is compact with respect to the topology that it inherits as a subset of projective

space.

4.1 Maximal submanifolds in Hp,q

In the article [SST23], we provided a full classification of complete maximal p-dimensional

spacelike submanifolds in the pseudo-hyperbolic space Hp,q. Maximal surfaces in pseudo-

Riemannian symmetric spaces are an important subject, that has been studied for instance

in [Ish88, BBD+12, Col16, CTT19, LTW20, Nie22, LT20, CT23, TW23].

To formulate the classification result of [SST23], let us consider a special class of

topologically embedded spheres in ∂∞Hp,q as follows. We say that a triple of pairwise

distinct points in ∂∞Hp,q - which, we recall, represent lines in Rp,q+1 - is positive whenever

their span is 3-dimensional with signature (2, 1), and non-negative whenever their span

contains no negative-definite 2-plane. When p ≥ 3, we say that a topologically embedded

(p − 1)-sphere Λ in ∂∞Hp,q is positive (respectively non-negative) whenever every triple

45
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of pairwise distinct points that it contains is positive (respectively non-negative). When

p = 2, for topological reasons, we require in addition that Λ contain at least 1 positive

triple. This latter case is studied in detail by Labourie–Toulisse–Wolf in [LTW20], where

they call non-negative 1-spheres semi-positive loops. We denote by B the space of non-

negative (p− 1)-spheres in ∂∞Hp,q, furnished with the Hausdorff topology.

We define a maximal p-submanifold of Hp,q to be a connected, p-dimensional, smooth

spacelike submanifold which is a critical point of the area functional with respect to com-

pactly supported variations. Equivalently, the trace of the second fundamental form van-

ishes identically. We denote byM the space of complete maximal p-submanifolds of Hp,q,

furnished with the topology of smooth convergence over compact sets. Given any complete

maximal p-submanifold M of Hp,q, we denote by ∂∞M the intersection of its closure with

∂∞Hp,q, and we call this set the asymptotic boundary of M . It is relatively straightforward

to show that ∂∞M is always a non-negative (p − 1)-sphere, and even that ∂∞ maps M
continuously into B. We prove the converse of this fact.

Theorem 4.1.1. The asymptotic boundary map ∂∞ : M → B is a homeomorphism. In

particular, for every non-negative (p−1)-sphere Λ in ∂∞Hp,q, there exists a unique complete

maximal p-submanifold of Hp,q with asymptotic boundary Λ.

Recall that the asymptotic Plateau problem in H3 has been discussed in Chapter 1, in

particular in relation with the existence results of Anderson in [And83] and the question

of uniqueness and non-uniqueness of its solutions.

This contrasts sharply with the situation in anti-de Sitter space. Indeed, in [ABBZ12],

Andersson–Barbot–Béguin–Zeghib showed that, given any representation ρ : Γ = π1(N)→
PO(p, 2), which is the holonomy of a maximal, globally hyperbolic, anti-de Sitter manifold

homeomorphic to N × R, for some closed manifold N , there exists a unique ρ-invariant

maximal hypersurface in Hp,1 = AdSp+1 with asymptotic boundary equal to the limit

set of ρ. In particular, ρ acts on this hypersurface freely and properly discontinuously,

with quotient diffeomorphic to N . In [BS10], Bonsante–Schlenker showed that every pos-

itive (p − 1)-sphere in ∂∞Hp,1 is the asymptotic boundary of some complete maximal

hypersurface and, furthermore, when p = 2 and the boundary curve is the graph of a

quasi-symmetric homeomorphism, this hypersurface is also unique.

Analogous results have recently been obtained for maximal surfaces in the pseudo-

hyperbolic space H2,q. Indeed, in [CTT19], Collier–Tholozan–Toulisse proved that, for

any closed, orientable surface S of genus at least 2, and any maximal representation

ρ : π1(S) → PO0(2, q + 1), the limit set of ρ is the asymptotic boundary of a unique

complete ρ-invariant maximal surface in H2,q. As before, ρ then acts freely and properly-

discontinuously on this surface, with quotient diffeomorphic to S. Finally, in [LTW20],

Labourie–Toulisse–Wolf generalised this result to prove that every non-negative 1-sphere

in ∂∞H2,q is the asymptotic boundary of a unique complete maximal surface.

Theorem 4.1.1 thus unifies the known results for Hp,1 and H2,q, and extends them
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to Hp,q for all (p, q), whilst addressing the most general hypotheses on the asymptotic

boundary.

The proof of Theorem 4.1.1, which is outlined in Section 4.2 below, requires an in-

depth study of the asymptotic structure of complete maximal p-submanifolds in Hp,q. The

techniques that we developed yield, in addition, the following new result concerning the

total curvatures of complete maximal p-submanifolds with sufficiently regular asymptotic

boundaries.

Theorem 4.1.2. If M is a complete maximal p-submanifold in Hp,q with C3,α asymptotic

boundary, and if II denotes its second fundamental form, then, for all s > p− 1,

‖II‖ ∈ Ls(M,dVolM ) . (4.1)

Motivated by applications to the AdS-CFT correspondence, the renormalized area of

a maximal surface M in H2,q with second fundamental form II is defined by

Aren(M) :=

∫
M
‖II‖2dVolM . (4.2)

The study of the renormalized area of maximal surfaces in H2,q presents a number of

interesting, as yet unstudied, problems. For example, following [AM10] it is of interest

to determine its first and second variations. Likewise, in the spirit of [Bis21], it is also of

interest to determine how finiteness of the renormalized area may be expressed in terms

of properties of the asymptotic boundary. Substituting p = s = 2 in Theorem 4.1.2 yields

a partial response to this latter problem for surfaces in pseudo-hyperbolic space.

Corollary 4.1.3. Every complete maximal surface M in H2,q with C3,α asymptotic boundary

has finite renormalized area.

4.2 Techniques and approach

The approach of [SST23] is quite different from those used in the earlier works mentioned

above. Indeed, Anderson used geometric measure theory to address the Plateau problem in

Hp, a technique which to date has no pseudo-Riemannian analogue. Likewise, Andersson–

Barbot–Béguin–Zeghib and Bonsante–Schlenker used the works [Ger83a, Ger06b] of Ger-

hardt, [Bar88] of Bartnik, and [Eck03] of Ecker, which are peculiar to the Lorentzian

setting. Finally Collier–Tholozan–Toulisse used Higgs bundles, while Labourie–Toulisse–

Wolf used pseudo-holomorphic curves, both of which are peculiar to the case of surfaces.

In [SST23] we proved Theorem 4.1.1 by applying the continuity method in a global

manner. This has the advantage over previous approaches of yielding detailed information

concerning the asymptotic structures of complete maximal p-submanifolds with smooth

asymptotic boundaries, yielding, as a byproduct, Theorem 4.1.2.
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The continuity method decomposes into three main steps, namely compactness, unique-

ness and perturbation (or, stability).

Our compactness result is a manifestation of the dichotomy first observed by Labourie

in [Lab97] in the context of k-surfaces in hyperbolic 3-space (see also [Sch96a, Smi13,

Smi18, Smi22b]).

Step 1 (Compactness). If {Mm}m∈N is a sequence of complete maximal p-submanifolds of

Hp,q then, either

1. {Mm}m∈N subconverges in the C∞loc topology to a complete maximal p-submanifold of

Hp,q, or

2. {Mm}m∈N subconverges in the Hausdorff topology to a Lipschitz p-submanifold foli-

ated by complete, lightlike geodesics, all having the same endpoint at infinity.

We call submanifolds of the second type degenerate. Up to isometries of the ambient space,

the space of degenerate submanifolds is itself homeomorphic to the space of 1-Lipschitz

maps from a hemisphere Sp−1
+ ⊆ Sp−1 into Sq−1. Indeed, degenerate submanifolds are

simply the graphs of suspensions of such maps.

Recall now that the spaceM of complete maximal p-submanifolds carries the topology

of smooth convergence over compact sets, whilst the space B of non-negative (p−1)-spheres

carries the Hausdorff topology. Since no degenerate submanifold can have a non-negative

sphere as its asymptotic boundary, one of the main consequences of Step 1 for the proof

of Theorem 4.1.1 is that the asymptotic boundary map ∂∞ :M→ B is proper.

Uniqueness is proven using the maximum principle. Our proof is similar to that of

[LTW20], although some care is required in the higher-dimensional setting.

Step 2 (Uniqueness). A non-negative (p− 1)-sphere in ∂∞Hp,q is the asymptotic boundary

of at most one complete maximal p-submanifold of Hp,q.

The lengthiest and most technical part of the proof is the following stability result.

Step 3 (Stability). Let (Λt)t∈(−ε,ε) be a smoothly varying family of smooth, spacelike spheres

in ∂∞Hp,q. If there exists a complete maximal p-submanifold M of Hp,q with asymp-

totic boundary Λ0 then, upon reducing ε if necessary, there exists a family (Mt)t∈(−ε,ε) of

complete maximal p-submanifolds such that, M0 = M and, for all t, Mt has asymptotic

boundary Λt.

The usual approach to proving stability results of this kind is to first represent maximal

p-submanifolds near M as zeroes of some functional over some Banach space, and then

to apply the implicit function theorem. In the present case, the non-compactness of the

submanifolds in question presents an extra layer of difficulty. Having established Steps

1, 2 and 3, Theorem 4.1.1 readily follows by the continuity method. Indeed, let Im(∂∞)

denote the image of ∂∞, let B∞ denote the space of smooth, spacelike (p − 1)-spheres
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in ∂∞Hp,q, and note that this is a dense subset of B. Since totally geodesic, spacelike

p-subspaces of Hp,q are trivially maximal, Im(∂∞) has non-trivial intersection with B∞.

Since B∞ is path-connected, the continuity method then shows that Im(∂∞) contains B∞.

Finally, by density of B∞, and properness of ∂∞, it follows that Im(∂∞) contains B, thus

proving Theorem 4.1.1.

The asymptotic analysis developed to prove Step 3 involves the use of weighted function

spaces over complete maximal p-submanifolds. Although weighted spaces are not actually

required for the proof of Theorem 4.1.1, they provide detailed asymptotic information at

little extra cost. In particular, they permit us to show that the norms of the second fun-

damental forms of suitably regular cones, on the one hand, and suitably regular, complete

maximal p-submanifolds, on the other, both decay exponentially at an equal rate, whilst

their volume forms both grow exponentially at an equal, slower rate. Theorem 4.1.2 is

then a straightforward consequence of these two properties.

4.3 Anosov representations

Amongst the main motivations for the study of complete maximal p-submanifolds in Hp,q

are their applications to the study of Anosov representations of word-hyperbolic groups

in PO(p, q + 1), see [Lab06, GW12, Kas18, DGK18, Zim21, Can]. In what follows, Γ will

denote a word-hyperbolic group with connected Gromov boundary.

In [DGK18], Danciger–Guéritaud–Kassel introduced a notion of convex-cocompactness

for representations in PO(p, q + 1). We say that a representation ρ : Γ → PO(p, q + 1) is

Hp,q-convex-cocompact whenever it has finite kernel and acts properly-discontinuously and

cocompactly on some closed, convex subset K of Hp,q whose interior Int(K) is non-trivial

and whose ideal boundary ∂∞K contains no non-trivial segment. We will be concerned

here with the more specific case where the Gromov boundary of Γ is homeomorphic to

a (p − 1)-sphere. In this case, Danciger–Guéritaud–Kassel showed that Λ = ∂∞K is

a positive (p − 1)-sphere in ∂∞Hp,q. Since every positive sphere is, in particular, non-

negative, Theorem 4.1.1 thus yields the following result.

Corollary 4.3.1. Let Γ be a word-hyperbolic group with Gromov boundary homeomorphic

to a (p − 1)-sphere. Every Hp,q-convex-cocompact representation ρ : Γ → PO(p, q + 1)

preserves a unique complete maximal p-submanifold M in Hp,q. Furthermore

1. ρ acts properly-discontinuously and cocompactly on M , and

2. M depends real analytically on ρ.

Corollary 4.3.1 has applications to the study of higher-dimensional extensions of higher-

rank Teichmüller theory. Recall (c.f. [Wie18]) that when Γ is a compact surface group,

and G is a reductive Lie group of higher rank, a connected component of Hom(Γ, G) is

said to be a higher-rank Teichmüller space whenever it consists entirely of discrete and



50 Chapter 4. Pseudo-hyperbolic geometry

faithful representations. The study of such spaces, which share a number of properties of

classical Teichmüller space, has yielded over the last two decades a rich and fascinating

theory. Although it is natural to generalize this concept to higher-dimensional word-

hyperbolic groups, to date only a few higher-dimensional cases have been shown to exist.

One such is given by Barbot in [Bar15], where he showed that, when Γ is the fundamental

group of a compact, p-dimensional hyperbolic manifold, the quasi-fuchsian component

of Hom(Γ,PO(p, 2)) consists entirely of Hp,1-convex-cocompact representations, which, in

particular, are discrete and faithful. In [BK23] Beyrer–Kassel prove a converse of Corollary

4.3.1, namely that any representation acting properly-discontinuously and cocompactly on

a weakly spacelike p-dimensional submanifold of Hp,q is Hp,q-convex-cocompact. Together

with Corollary 4.3.1, this allows them to show in [BK23, Theorem 1.3] that, for all p ≥ 2

and q ≥ 1, and for any word-hyperbolic group Γ with Gromov boundary homeomorphic

to a (p− 1)-sphere, the set of Hp,q-convex-cocompact representations ρ : Γ→ PO(p, q+ 1)

is a union of connected components of Hom(Γ,PO(p, q+ 1)). In this manner, they extend

Barbot’s result to yield a large family of new higher-dimensional higher-rank Teichmüller

spaces, including many examples which are not quasi-fuchsian (c.f. [LM19, MST23b]).

Let us discuss the applications of Corollary 4.3.1 to the study of P1-Anosov representa-

tions of word-hyperbolic groups in PO(p, q + 1). Anosov representations were introduced

by Labourie in [Lab06], and have since become a cornerstone of higher-rank Teichmüller

theory (see Danciger–Guéritaud–Kassel’s paper [DGK18] for a formal definition of the

concept of P1-Anosov representations). In addition Danciger–Guéritaud–Kassel described

a direct relationship between such representations and the Hp,q-convex-cocompact repre-

sentations discussed above. To understand this, note first that the set of non-null lines

in Rp,q+1 consists of two connected components, namely Hp,q and Hq+1,p−1, where the

sign of the metric of the latter is inverted. Danciger–Guéritaud–Kassel showed that every

Hp,q-convex-cocompact representation is P1-Anosov and, conversely, that every P1-Anosov

representation is either Hp,q-convex-cocompact or Hq+1,p−1-convex-cocompact. We say

that the representation is positive in the former case, and negative in the latter, so that

every Hp,q-convex-cocompact representation is a positive P1-Anosov representation, and

vice versa. In particular, in this case, Λ := ∂∞K coincides with the proximal limit set of

the representation ρ.

The first application of Corollary 4.3.1 provides a new constraint on the hyperbolic

groups which admit positive P1-Anosov representations.

Corollary 4.3.2. Let Γ be a torsion-free word-hyperbolic group with Gromov boundary

homeomorphic to a (p − 1)-sphere. If Γ admits a positive P1-Anosov representation

in PO(p, q + 1), then it is isomorphic to the fundamental group of a smooth, closed p-

dimensional manifold with universal cover diffeomorphic to Rp.

It is worth comparing Corollary 4.3.2 to the result [BLW10] of Bartels–Lück–Weinberger,

which states that, for p ≥ 6, any torsion-free hyperbolic group with Gromov boundary
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homeomorphic to a (p − 1)-sphere is the fundamental group of a closed p-dimensional

topological manifold with universal cover homeomorphic to Rp. Note, in particular, that

in Example 5.2 and Lemma 5.3 of that paper, the authors construct, for all k ≥ 2, a

torsion-free hyperbolic group Γ, with Gromov boundary homeomorphic to S4k−1, which is

not isomorphic to the fundamental group of any closed smooth aspherical manifold. We

consequently have the following corollary.

Corollary 4.3.3. For any k ≥ 2 and q ≥ 1, there exists a torsion-free word-hyperbolic group

Γ with Gromov boundary homeomorphic to a (4k − 1)-sphere which does not admit any

positive P1-Anosov representation in PO(4k, q + 1).

The second application concerns the structure of a class of manifolds introduced

by Guichard–Weinhard in [GW12]. Indeed, let Isot(E) denote the space of maximally

isotropic subspaces of E. Given a positive P1-Anosov representation ρ of Γ in PO(p, q+1),

Guichard–Wienhard constructed a domain Ωρ in Isot(E) upon which ρ(Γ) acts properly-

discontinuously and cocompactly. The quotient Ωρ/ρ(Γ) is a closed manifold locally mod-

elled on Isot(E). However, it is a difficult question to determine the topology of such quo-

tient (see also [AMWT23]). By means of the construction of an equivariant “projection”

from Ωρ to the invariant maximal submanifold provided by Corollary 4.3.1, in [SST23] we

have been able to provide information in this direction, generalizing the results of [CTT19]

for p = 2.

Before stating the result, recall that, given two natural numbers k ≤ n, the Stiefel

manifold Vk,n is the space of k-tuples of unit vectors in Rn that are pairwise orthogonal.

For all such k and n, Vk,n is diffeomorphic to the homogeneous space O(n)/O(n− k). In

particular, it is connected unless k = n, in which case it has 2 connected components.

Corollary 4.3.4. Let Γ be a torsion-free word-hyperbolic group with Gromov boundary home-

omorphic to a (p − 1)-sphere, let ρ : Γ → PO(p, q + 1) be a positive P1-Anosov represen-

tation, and let Ωρ denote its Guichard–Wienhard domain.

1. If q ≥ p, and if M denotes the complete maximal p-submanifold preserved by ρ, then

Ωρ/ρ(Γ) is homeomorphic to a Vp,q-bundle over M/ρ(Γ).

2. If q < p, then Ωρ is empty.

In particular, in the former case, Ωρ is connected, unless p = q and the first Stiefel-Whitney

class of NM/ρ(Γ) vanishes, in which case it has 2 connected components.



Chapter 5

Anti-de Sitter geometry

In his 1990 pioneering paper [Mes07], Geoffrey Mess has first highlighted the deep con-

nections between the Teichmüller theory of hyperbolic surfaces, and three-dimensional

Lorentzian geometries of constant sectional curvature. The purpose of this chapter is to

focus on Anti-de Sitter geometry, namely the Lorentzian geometry of constant curvature

−1, mostly in dimension three, and on its relations and applications in Teichmüller the-

ory. Chapter 6 below will concern Minkowski geometry, which is instead the model of flat

Lorentzian geometry.

5.1 Mess’ work on Anti-de Sitter geometry

The root of the connection between Anti-de Sitter geometry of dimension three and Teich-

müller theory rests in the observation that Anti-de Sitter space AdS3 = H2,1 admits a Lie

group model, which identifies it with the group of orientation-preserving isometries of H2.

This identification comes from the fact that AdS3, which is defined as the projectiviza-

tion of the space of negative vectors in a four-dimensional vector space V endowed with a

quadratic form q of signature (2, 2), can be realized as the space PSL(2,R) of projective

matrices of positive determinant, since one can choose V to be the vector space of 2-by-2

matrices and the quadratic form to be q = −det. In this incarnation, the Lorentzian

metric of AdS3 coincides (up to a constant) with the Lorentzian metric induced by the

(bi-invariant) Killing form of PSL(2,R) on its Lie algebra sl(2,R). Moreover, the identity

component of the isometry group of AdS3 (namely, the group of orientation-preserving

and time-preserving isometries) corresponds to PSL(2,R)× PSL(2,R), acting by left and

right multiplication on PSL(2,R).

Let us outline two ideas of Mess that played a fundamental – and visionary – role in

many research results up to now, including those presented in this chapter. The first idea

is the construction of a Gauss map for spacelike surfaces in AdS3, the second is the study

of maximal globally hyperbolic Anti-de Sitter manifolds.

52
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5.1.1 Gauss maps

The first crucial idea of Mess arises from the following Gauss map construction, using the

Lie group structure of AdS3 = PSL(2,R). Given an embedded spacelike surface Σ in AdS3,

one can construct two maps Gl, Gr : Σ → H2, as follows. Given a point p ∈ Σ, one can

push forward the future unit normal vector to Σ at p by left and right multiplication by

the inverse of p. One thus obtains two future unit vectors in TidAdS3, which are precisely,

after identifying the hyperboloid of future unit vectors with H2, Gl(p) and Gr(p). Under

certain assumptions on Σ, ensuring that Gl and Gr are injective, one can thus associate

to Σ the map Gr ◦G−1
l , which is defined between (subsets of) H2 and itself.

Mess has then observed that, applying this construction to convex hulls in Anti-de Sit-

ter space, one can prove earthquake theorems in hyperbolic geometry. (Although convex

hulls are not smooth surfaces, the construction can still be pursued in this setting, with the

only caveat that the earthquake map is not uniquely determined on its discontinuity locus).

In [Mes07], Mess outlined the proof of the earthquake theorem between closed hyperbolic

surfaces, providing an alternative proof of Kerckhoff’s earthquake theorem [Ker83]. His

groundbreaking ideas have been improved and implemented by several authors, leading

to many results of existence of earthquake maps in various settings [BKS11, BS09, BS12],

including a proof of Thurson’s earthquake theorem in the universal setting – namely, the

existence of an earthquake of H2 extending any orientation-preserving circle homeomor-

phism – which has been written in detail in my chapter [DS22] with my PhD student Farid

Diaf, when Farid was a Master student under my supervision. The Gauss map construc-

tion les to many developments also for other interesting types of maps of the hyperbolic

plane, for instance minimal Lagrangian maps, which are associated to maximal surfaces

and are discussed in Section 5.2.

5.1.2 Deformation space of maximally globally hyperbolic manifolds

Let us recall the definition of maximal globally hyperbolic Cauchy compact Anti-de Sitter

manifolds (in short, MGHC AdS). A Cauchy surface in a Lorentzian manifold is an em-

bedded hypersurface that intersects every inextensible causal curve exactly in one point; a

Lorentzian manifold admitting a Cauchy surface is called globally hyperbolic. It is moreover

maximal if every isometric embedding in another globally hyperbolic manifold sending a

Cauchy surface to a Cauchy surface is surjective. Finally, a MGHC AdS manifold is a

maximal globally hyperbolic Lorentzian manifold of constant sectional curvature −1 ad-

mitting a closed Cauchy surface. A simple example of MGHC AdS manifolds are Fuchsian

manifolds, whose metric G can be written globally as a warped product

G = −dt2 + cos2(t)h , (5.1)
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for t ∈ (−π/2, π/2) and h a hyperbolic metric on a closed manifold. In this case the

Cauchy surface t = 0 is totally geodesic.

A classical fact in Lorentzian geometry (see [Ger70, BE81, BS03]) is that globally

hyperbolic Lorentzian manifolds are diffeomorphic to Σ×R, where Σ is a Cauchy surface,

and any two Cauchy surfaces are diffeomorphic. Let us now consider three-dimensional

AdS manifolds whose Cauchy surfaces are closed. Once a closed oriented surface Σ is

fixed, we define the deformation space of MGHC AdS manifolds as follows:

MGH(Σ) := {G |G is a MGHC AdS metric on Σ× R}/Diff0(Σ× R) ,

where the group Diff0(Σ×R) of diffeomorphisms isotopic to the identity acts by pull-back

of G. It turns out that MGH(S2) is empty, MGH(T 2) is a four-dimensional manifold,

while if Σ is a surface of genus ≥ 2, then MGH(Σ) has dimension 6|χ(Σ)|. When Σ has

genus ≥ 2, the deformation space MGH(Σ) contains the Fuchsian locus F(Σ), namely

those manifolds whose metric is of the form (5.1), which is naturally identified to the

Teichmüller space T (Σ).

Now, Mess observed that, when Σ is a closed surface of genus ≥ 2, the deformation

space MGH(Σ) of maximal globally hyperbolic Anti-de Sitter manifolds is intimately

related with the Teichmüller space T (Σ). More concretely, he provided a parametrization

of MGH(Σ) by the product T (Σ)× T (Σ); other parametrizations again by T (Σ)× T (Σ)

or by T ∗T (Σ) were introduced in [KS07] — the latter relying on existence and uniqueness

results for maximal surfaces which will be further discussed below.

5.2 Maximal surfaces and minimal Lagrangian maps

In this section, we will focus on the construction, and study, of minimal Lagrangian self-

diffeomorphisms of H2. A (local) diffeomorphism of H2 is called minimal Lagrangian if its

graph is a minimal Lagrangian surface in H2×H2. In [BS10], Bonsante-Schlenker observed

that minimal Lagrangian maps are precisely those that are associated, via the Gauss map

construction described in Section 5.1, to maximal surfaces (which, we recall, where defined

in the more general setting of Hp,q in Chapter 4).

Bonsante and Schlenker applied this observation, together with the solution of the

asymptotic Plateau problem in AdS3 (see Chapter 4 again) to prove that every quasisym-

metric circle homeomorphism admits a unique quasiconformal minimal Lagrangian exten-

sion to H2. Based on their results, a natural line of investigation concerns the optimality

of the minimal Lagrangian extension, in relation with the complexity of the boundary

circle homeomorphism. Indeed, the quasiconformal dilatation of the minimal Lagrangian

extension of a circle homeomorphism φ : RP1 → RP1 is directly related to the norm of the

second fundamental form of the unique maximal surface in AdS3 whose asymptotic bound-

ary is the graph of ϕ, using the identification of ∂∞AdS3, namely the space of projective



Part II. Pseudo-Riemannian geometries 55

classes of rank one 2-by-2 matrices, with RP1 × RP1.

5.2.1 Qualitative optimality

In this context, a direct consequence of Corollary 4.1.3 is the following:

Corollary 5.2.1. If φ is a C3,α circle diffeomorphism, then the Beltrami coefficient of its

unique quasiconformal minimal Lagrangian extension is in L2(H2, dVolH2).

Indeed, Corollary 4.1.3 (applied to the case q = 1) implies that a complete maximal

surface S in AdS3 whose graph is a C3,α circle diffeomorphism satisfies:

Aren(S) =

∫
S
‖II‖2dAreaS < +∞ .

Now, a direct computation shows that, if µ is the Beltrami differential of the minimal

Lagrangian map of H2 obtained from S, then |µ| = O(‖II‖), and the area form of S and of

H2, compared using one of the two Gauss maps, are comparable. This gives immediately

that ∫
H2

|µ|2dAreaH2 < +∞ .

It is known that quasiconformal maps of H2 with square integrable Beltrami differen-

tial extend to Weil-Petersson quasisymmetric circle homeomorphisms. Conversely, Weil-

Petersson circle homeomorphisms are precisely those that admit some quasiconformal

extension with square integrable Beltrami differential. The space of Weil-Petersson circle

homeomorphisms is precisely the closure of the space of circle diffeomorphisms with respect

to the topology induced on the universal Teichmüller space by the (infinite-dimensional)

Kähler structure constructed in [TT06]. Motivated by the recent work of Bishop [Bis21],

which characterized Weil-Petersson quasicircles in H2 as those Jordan curves that bound

a complete minimal surface in H3 of finite renormalized area, it is natural to conjecture

the following:

Conjecture. A quasisymmetric circle homeomorphism is Weil-Petersson if and only if its

quasiconformal minimal Lagrangian extension has square integrable Beltrami differential.

I believe this will is an important question that deserves future investigation.

Next, another important class of quasisymmetric homeomorphisms are the symmetric

ones. We omit here their intrinsic definition, but they are characterized by the condition

of admitting some quasiconformal extension which is asymptotically conformal, meaning

that its Beltrami differential tends to zero towards ∂H2. Conversely, any asymptotically

conformal quasiconformal map of the disc extends to a symmetric homeomorphism of the

circle. Together with Jérémy Toulisse, by showing that the second fundamental form of

a complete maximal surface S in AdS3 tends to zero if ∂∞S is the graph of a symmetric

homeomorphism, we obtained the following (currently unpublished):
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Theorem 5.2.2. A quasisymmetric circle homeomorphism is symmetric if and only if its

quasiconformal minimal Lagrangian extension is asymptotically conformal.

5.2.2 Quantitative optimality

Given an orientation-preserving homeomorphism φ : RP1 → RP1, an important invariant

in Anti-de Sitter geometry, introduced in [BS10], is the width of the convex hull. This is

defined as the supremum of the length of timelike paths contained in the convex hull of

the curve gr(φ). By a simple application of the maximum principle, the maximal surface

S with ∂∞S = gr(φ) is itself contained in the convex hull. Bonsante and Schlenker proved

that for every orientation-preserving homeomorphism φ, the width is at most π/2, and it

is strictly less than π/2 precisely when φ is quasisymmetric.

The first purpose of the paper [Sep19b] was to study the quantitative relations between

the cross-ratio norm of φ (which is introduced below), the width w of its convex hull, and

the supremum ||λ||∞ of the principal curvatures of the maximal surface S of nonpositive

curvature such that ∂∞S = gr(φ). By the above discussion, ||φ||cr < +∞ if and only if

w < π/2 if and only if ||λ||∞ < 1, but it is not clear whether there is a direct relation

between these quantities.

Width and principal curvatures The study of the relation between the principal curva-

tures of a maximal surface and the width of the convex hull is split into two parts. Observe

that the principal curvatures of S vanish identically when S is a totally geodesic plane,

in which case the width is zero since the convex hull consists of S itself. The first result

of [Sep19b] describes the behaviour of maximal surfaces which are close to being a totally

geodesic plane:

Theorem 5.2.3. There exists a constant C1 such that, for every maximal surface S with

||λ||∞ < 1 and width w,

||λ||∞ ≤ C1 tanw .

This theorem provides interesting information only when w is in some neighborhood of

zero, since for large w the already know bound ||λ||∞ < 1 is not improved. On the other

hand, Bonsante and Schlenker showed that if a maximal surface of nonpositive curvature

has a point where the principal curvatures are −1 and 1, then the principal curvatures are

−1 and 1 everywhere, and therefore the induced metric is flat. Moreover, the surface is

a so-called Barbot surface, which is described explicitly and has width π/2. The second

theorem concerns surfaces which are close to this situation:

Theorem 5.2.4. There exist universal constants M > 0 and δ ∈ (0, 1) such that, if S is a

maximal surface in AdS3 with δ ≤ ||λ||∞ < 1 and width w, then

tanw ≥
(

1

1− ||λ||∞

)1/M

.
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It is worth remarking here that an inequality going in the opposite direction can be

obtained more easily, leading to the following:

Proposition 5.2.5. Let S be a maximal surface in AdS3 with ||λ||∞ ≤ 1 and width w. Then

tanw ≤ 2||λ||∞
1− ||λ||2∞

.

Since 2||λ||∞/(1 − ||λ||2∞) behaves like 2||λ||∞ as ||λ||∞ → 0, one sees that Theorem

5.2.3 is optimal for small ||λ||∞, up to determining the best possible value of the constant

C1. On the other hand, from Proposition 5.2.5 one obtains that tanw ≤ 2/(1 − ||λ||∞),

and it remains an open question whether Theorem 5.2.4 can be improved to an inequality

of the form tanw ≥ C−1
2 (1− ||λ||∞)−1.

Quasiconformal dilatation A classical problem in Teichmüller theory concerns quasicon-

formal extensions to the disc of quasisymmetic homeomorphisms of the circle. Recall that

quasisymmetric homeomorphisms φ : RP1 → RP1 are characterized by the finiteness of

the cross-ratio norm, which is defined as:

||φ||cr = sup
cr(Q)=−1

|ln |cr(φ(Q))|| .

Given a quasisymmetric homeomorphism, classical quasiconformal extensions include, for

instance, the Beurling-Ahlfors extension and the Douady-Earle extension. More recently,

Markovic [Mar17] proved the existence of quasiconformal harmonic extensions, where the

harmonicity is referred to the complete hyperbolic metric of H2.

Moreover, the maximal dilatation of the classical extensions has been widely studied.

For instance, Beurling and Ahlfors in [BA56] proved that, if ΦBA is the Beurling-Ahlfors

extension of a quasisymmetric homeomorphism φ, then the maximal dilatation K(ΦBA)

satisfies:

lnK(ΦBA) ≤ 2||φ||cr .

The asymptotic behaviour was later improved in [Leh83] by

lnK(ΦBA) ≤ ||φ||cr + ln 2 .

For the Douady-Earle extension, [DE86] proved that there exist constants δ and C such

that, for every quasisymmetric homeomorphism of the circle φ with ||φ||cr < δ, the Douady-

Earle extension ΦDE satisfies:

lnK(ΦDE) ≤ C||φ||cr .
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More recently, Hu and Muzician proved in [HM12] that the following always holds:

lnK(ΦDE) ≤ C1||φ||cr + C2 .

One of the main achievements of [Sep19b] was to obtain analogous results for the

minimal Lagrangian extension, whose existence was proved in [BS10] as already remarked.

As application of Theorem 5.2.3 leads to the following inequality:

Theorem 5.2.6. There exist universal constants δ and C1 such that, for any quasisymmetric

homeomorphism φ of RP1 with cross ratio norm ||φ||cr < δ, the minimal Lagrangian

extension ΦML : H2 → H2 has maximal dilatation bounded by:

lnK(ΦML) ≤ C1||φ||cr .

On the other hand, an application of Theorem 5.2.4 led to an asymptotic estimate of

the maximal dilatation of ΦML:

Theorem 5.2.7. There exist universal constants ∆ and C2 such that, for any quasisymmet-

ric homeomorphism φ of RP1 with cross ratio norm ||φ||cr > ∆, the minimal Lagrangian

extension ΦML : H2 → H2 has maximal dilatation bounded by:

lnK(ΦML) ≤ C2||φ||cr .

Proposition 5.2.5 also provides an inequality in the converse direction, which holds for

quasisymmetric homeomorphisms with small cross-ratio norm and shows that Theorem

5.2.6 is essentially not improvable.

Theorem 5.2.8. There exist universal constants δ and C0 such that, for any quasisymmetric

homeomorphism φ of RP1 with cross ratio norm ||φ||cr < δ, the minimal Lagrangian

extension Φ : H2 → H2 has maximal dilatation bounded by:

C0||φ||cr ≤ lnK(ΦML) .

The constant C0 can be taken arbitrarily close to 1/2.

Putting together Theorem 5.2.6 and Theorem 5.2.7 led to the following:

Corollary 5.2.9. There exists a universal constant C such that, for any quasisymmetric

homeomorphism φ of RP1, the minimal Lagrangian extension ΦML : H2 → H2 has maximal

dilatation K(ΦML) bounded by:

lnK(ΦML) ≤ C||φ||cr .

Corollary 5.2.9 is therefore a result for minimal Lagrangian extensions comparable to

what has been proved for Beurling-Ahlfors and Douady-Earle extensions. In [Sep19c] I
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have moreover studied some explicit examples of minimal Lagrangian extensions in order

to study the sharpness of these results, thus leading to constraints on the possible values

of the optimal constant in the above inequalities.

Width and cross-ratio norm The bridge from Theorem 5.2.3 to Theorem 5.2.6, and from

Theorem 5.2.4 to Theorem 5.2.7, is twofold. The first aspect is a direct relation between

the supremum of the principal curvatures of a maximal surface S and the quasiconformal

dilatation K(ΦML) of the minimal Lagrangian extension, which is given by the following

formula:

K(ΦML) =

(
1 + ||λ||∞
1− ||λ||∞

)2

.

On the other hand, the step from the width to the cross-ratio norm is more subtle.

This is the content of the following proposition:

Proposition 5.2.10. Given any quasisymmetric homeomorphism φ of RP1, let w be the

width of the convex hull of the graph of φ in ∂∞AdS3. Then

tanw ≤ sinh

(
||φ||cr

2

)
.

By means of these two relations and some computations, Theorem 5.2.6 and Theorem

5.2.7 are proved on the base of Theorem 5.2.3 and Theorem 5.2.4.

To prove Proposition 5.2.10, assuming that the width is w, one can essentially find two

support planes P− and P+ for the convex hull of gr(φ), on the two different sides of the

convex hull, such that P− and P+ are connected by a timelike geodesic segment of length

w. Using that the boundaries of the convex hull are pleated surfaces one can pick four

points in ∂∞AdS3 - two in the boundary at infinity ∂∞P− and the other two in ∂∞P+

- and use such four points to show that the cross-ratio norm of φ is large. Turning this

qualitative picture into quantitative estimates, leading to the proof of Proposition 5.2.10,

involves careful and somehow technical constructions in Anti-de Sitter space.

Similar techniques also permit to prove an inequality in the converse direction, which

is the content of the following proposition.

Proposition 5.2.11. Given any quasisymmetric homeomorphism φ of RP1, let w the width

of the convex hull of the graph of φ in ∂∞AdS3. Then

tanh

(
||φ||cr

4

)
≤ tanw .

This inequality, however, is clearly not optimal, as the hyperbolic tangent tends to 1

as ||φ||cr tends to infinity. Hence the inequality is interesting only for w < π/4. Never-

theless, this inequality is used to obtain Theorem 5.2.8 from Proposition 5.2.5. To prove

Proposition 5.2.11, one can assume the cross-ratio norm is ||φ||cr and - composing with
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Möbius transformations in an appropriate way - construct a quadruple points in ∂∞AdS3.

Then we consider two spacelike lines connecting two pairs of points at infinity chosen in

the above quadruple. By construction, those two lines are contained in the convex hull of

gr(φ), hence the maximal length of a timelike geodesic segment between them provides a

bound from below on the width.

5.3 K-surfaces, CMC surfaces, and landslides

In this section, we shall focus on other classes of (hyper)surfaces in Anti-de Sitter space,

namely constant mean curvature hypersurfaces, for which the mean curvature is equal to

a constant H ∈ R (and thus include maximal surfaces, which correspond to H = 0), and

(for surfaces, namely two-dimensional submanifolds in AdS3) K-surfaces, defined by the

condition that the intrinsic curvature is equal to a constant K which is supposed here to

be in (−∞,−1). By Gauss’ equation in AdS3, K = −1− κ where κ is the determinant of

the shape operator, also called Gaussian curvature. Hence the condition K ∈ (−∞,−1)

corresponds to κ > 0, and thus to the convexity of the surface.

In dimension two, there two classes are related, at least locally, by a normal flow

construction. Indeed, given an immersion σ : S → AdS3 of constant Gaussian curvature

κ > 0, the normal evolution on the convex side of σ, for time tκ = arctan(κ1/2) is an

immersion of constant mean curvature H = κ−1/2(κ− 1).

5.3.1 Existence for K-surfaces

In [BS18], we studied existence and uniqueness results for K-surfaces with a given asymp-

totic behaviour. The first result concerns the case of boundaries at infinity which are

graphs of an orientation-preserving homeomorphism of ∂H2:

Theorem 5.3.1. Given any orientation-preserving homeomorphism φ : ∂H2 → ∂H2, the

two connected components of the complement of the convex hull of Λ = graph(φ) in the

domain of dependence of Λ are both foliated by K-surfaces SK , as K ∈ (−∞,−1), in such

a way that if K1 < K2, then SK2 is in the convex side of SK1.

Analogously to the case of hyperbolic space H3 (as proved in [RS94]), there exists

two K-surfaces with asymptotic boundary Λ, one of which is past-convex and the other

future-convex. Theorem 5.3.1, in the case of φ a quasisymmetric homeomorphism, gives

positive answer to the existence part of Question 8.3 in [BBD+12].

Let us now turn to the more general case of asymptotic boundaries which are non-

negative 1-spheres (which we call here non-negative circles), in the language of Chapter

4. There is a major difference with the formulation of the asymptotic Plateau problem

for K-surfaces in AdS3, as opposed to maximal surface. The main reason is that, in

general, a non-negative circle Λ can contain null segments. In particular, if Λ contains a
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sawtooth, that is, the union of adjacent“horizontal”and“vertical”segments in RP1×RP1 ∼=
∂∞AdS3, then the convex hull of the sawtooth is a lightlike totally geodesic triangle, which

is contained both in the boundary of the convex hull of Λ and in the boundary of the

domain of dependence of Λ. Hence any (future or past) convex surface with boundary Λ

must necessarily contain such lightlike triangle.

An example is a 2-step curve is the union of four segments, two horizontal and two

vertical in an alternate way. It is not possible to have a convex surface in AdS3 with

boundary a 2-step curve.

The proof of Theorem 5.3.1 actually extends to the case of a general non-negative circle

Γ, except the degenerate case described above.

Theorem 5.3.2. Given any non-negative circle Λ in ∂AdS3 which is not a 2-step curve, for

every K ∈ (−∞,−1) there exists a past-convex (resp. future-convex) surface S+
K (resp.

S−K) with ∂S±K = Λ, such that:

• Its lightlike part is union of lightlike triangles associated to sawteeth;

• Its spacelike part is a smooth K-surface.

Moreover, the two connected components of the complement of the convex hull of Λ in

the domain of dependence of Λ are both foliated by the spacelike part of surfaces S±K , as

K ∈ (−∞,−1), in such a way that if K1 < K2, then S±K2
is in the convex side of S±K1

.

In [BBZ11], the existence (and uniqueness) of a foliation by K-surfaces was proved

in the complement of the convex core of any maximal globally hyperbolic Anti-de Sitter

spacetime containing a compact Cauchy surface. Using results of [Mes07], this means that

the statement of Theorem 5.3.2 holds for curves Λ which are the graph of an orientation-

preserving homeomorphism which conjugates two Fuchsian representations of the funda-

mental group of a closed surface in Isom(H2). Moreover, the K-surfaces are invariant for

the representation in Isom(AdS3) ∼= PSL(2,R) × PSL(2,R) given by the product of the

two Fuchsian representations.

The proof of Theorem 5.3.1, and more generally Theorem 5.3.2, presented in [BS18],

relies on an approximation from the case of [BBZ11]. Some technical tools are needed.

First, we needed to show that it is possible to approximate any weakly spacelike curve Γ

by curves invariant by a pair of Fuchsian representations. For this purpose, we adapted a

technical lemma proved in [BS17].

Second, we used a theorem of Schlenker ([Sch96b]) which, in this particular case,

essentially ensures that a sequence Sn of K-surfaces in AdS3 converges C∞ to a spacelike

surface S∞ (up to subsequences) unless they converge to a totally geodesic lightlike plane

(whose boundary at infinity is not a non-negative sphere) or to the union of two totally

geodesic lightlike half-planes, meeting along a spacelike geodesic (in this case the boundary

is a 2-step curve).
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To apply the theorem of Schlenker, and deduce that the limiting surface S∞ is a K-

surface with ∂S∞ = Λ (thus proving Theorem 5.3.1), one has to prove that S∞ does not

intersect the boundary of the domain of dependence of Γ. More in general, for the proof

of Theorem 5.3.2, one must show that the spacelike part of S∞ does not intersect the

boundary of the domain of dependence of Λ. This is generally the most difficult step in

this type of problems, and frequently requires the use of barriers. In fact, it is possible to

compute (by means of a reduction to an ODE problem) a 1-parameter family of smooth,

spacelike K-surfaces whose boundary coincides with the boundary of a totally geodesic

spacelike half-plane in AdS3. In other words, Theorem 5.3.2 is proved by a hands-on

approach when the curve Λ is the union of two null segments and the boundary of a

totally geodesic half-plane, in the boundary at infinity of AdS3. Such K-surfaces are then

fruitfully used as barriers to conclude the proof of Theorem 5.3.1 — and the proof actually

works under the more general hypothesis of Theorem 5.3.2.

In the case Λ is the graph of a quasisymmetric homeomorphism, in [BS18] we then

proved that the K-surfaces with boundary Λ are unique. Moreover, it is not difficult to

prove that if S is a convex surface in AdS3 with ∂S = Λ and with bounded principal

curvatures, then Λ is the graph of a quasisymmetric homeomorphism. We gave a con-

verse statement for K-surfaces, namely, a K-surface with boundary Λ = gr(φ), for φ

quasisymmetric, necessarily has bounded principal curvatures.

Theorem 5.3.3. Given any quasisymmetric homeomorphism φ : ∂H2 → ∂H2, for every

K ∈ (−∞,−1) there exists a unique future-convex K-surface S+
K and a unique past-convex

K-surface S−K in AdS3 with ∂S±K = gr(φ). Moreover, the principal curvatures of S±K are

bounded.

To prove uniqueness, the standard arguments for these problems are applications of the

maximum principle, by using the existence of a foliation {SK} by K-surfaces and showing

that any other K-surface S′K must coincide with a leaf of the given foliation. However, in

this case, due to non-compactness of the surfaces, one would need a form of the maximum

principle at infinity. This is achieved more easily in this case by applying isometries of

AdS3 so as to bring a maximizing (or minimizing) sequence on S′K to a compact region

of AdS3. Then one applies two main tools: the first is again the convergence theorem of

Schlenker, and the second is a compactness result for quasisymmetric homeomorphisms

with uniformly bounded cross-ratio norm. Up to subsequences, both the isometric images

of S′K and the isometric images of the leaves {SK} of the foliation converge to an analogous

configuration in AdS3. But now it is possible to apply the classical maximum principle to

conclude the argument.

5.3.2 Extensions by θ-landslides

Let us now introduce θ-landslides, a natural generalization of minimal Lagrangian maps

introduced in [BMS13]. These maps turn out to be precisely the maps associated to CMC
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and constant Gaussian curvature surfaces in AdS3.

Given two hyperbolic metrics h and h′ on a surface S, and θ ∈ (0, π) a θ-landslide

fθ : (S, h)→ (S, h′) is a smooth map which satisfies one of the equivalent conditions:

1. There exists a smooth (1, 1)-tensor A such that (if Jh is the almost-complex structure

of h):

f∗θ h
′ = h(((cos θ)id + (sin θ)Jh ◦A)·, ((cos θ)id + (sin θ)Jh ◦A)·)

which is positive-definite, h-symmetric, h-Codazzi and has unit determinant.

2. There exist harmonic maps f : (S,X)→ (S, h) and f ′ : (S,X)→ (S, h′), where X is a

conformal structure on S, such that fθ = f ′ ◦ f−1 whose Hopf differentials satisfy

Hopf(f) = e2iθHopf(f ′) .

Moreover, in the non-compact case, one has to further impose that f and f ′ have the

same holomorphic energy density.

When θ = π/2 we recover minimal Lagrangian maps, as the above two conditions are

in fact equivalent to one of the possible characterizations of minimal Lagrangian maps –

namely, being the composition of two harmonic maps with opposite Hopf differentials. It

then turns out that θ-landslides are precisely the maps associated to surfaces of constant

mean curvature H = 2/ tan θ, and therefore also to the two equidistant surfaces of constant

Gaussian curvature tan2(θ/2) and 1/ tan2(θ/2).

By interpreting Theorems 5.3.2 and 5.3.3 in this context, we can draw a direct conse-

quence on the existence of landslide extensions, thus generalizing the result of [BS10] on

minimal Lagrangian extensions:

Corollary 5.3.4. Given any quasisymmetric homeomorphism φ : ∂H2 → ∂H2 and any

θ ∈ (0, π), there exist a unique θ-landslide Φθ : H2 → H2 which extends φ. Moreover, Φθ

is quasiconformal.

It is worth remarking that, when θ approaches 0, then one of the two associated surfaces

of constant Gaussian curvature (namely the one having Gaussian curvature tan2(θ/2))

approaches a boundary component of the convex core of the ambient manifold (M, g),

while the other escapes at infinity in the other end of (M, g). When θ approaches π

instead, the roles are switched. Hence the landslide maps fθ converge to the left and

right earthquake maps between (Σ, h) and (Σ, h′) as θ diverges in its interval of definition

(0, π). Morally, θ-landslides are a natural one-parameter family of smooth extensions which

interpolate between left earthquake, minimal Lagrangian maps, and right earthquakes.

From the above discussion, it is clear that several types of maps from H2 to itself, or

(in the quotient) from a closed hyperbolic surface to another, can be constructed by means

of special types of spacelike surfaces in AdS3. The problem of characterizing the maps

that can be obtained by means of this construction was studied in [BS19] and [Sep18].
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5.3.3 CMC hypersurfaces

The PhD thesis of Enrico Trebeschi, whom I co-supervise with Francesco Bonsante, aims

to study CMC hypersurfaces in AdSn. In his first article [Tre23], Enrico proved the exis-

tence and uniqueness of the asymptotic Plateau problem for CMC hypersurfaces, having a

prescribed non-negative (n−1)-sphere as the asymptotic boundary in ∂∞AdSn. Moreover,

Enrico proved that these hypersurfaces are always complete, which can be seen as the ana-

logue in AdSn of the completeness of entire CMC hypersurfaces in Minkowski space by

Cheng and Yau ([CY76]). In a second article, in preparation, Enrico is obtaining estimates

on the curvature of these CMC hypersurfaces in terms of the width, in the spirit of (and

generalizing) Theorem 5.2.3. When n = 3, these estimates will thus lead to inequalities

on the maximal dilatation of the θ-landslides, generalizing Theorem 5.2.6 to any value of

θ.

5.4 Volume of Anti-de Sitter manifolds

The volume is, in general, an extremely rich invariant of pseudo-Riemannian geometric

manifolds. In the celebrated paper [Bro03], Brock proved that the volume of the convex

core of a quasi-Fuchsian manifold M behaves coarsely like the Weil-Petersson distance be-

tween the two components in T (S)× T (S) provided by Bers’ parameterization ([Bro03]).

The main purpose of the article [BST17] is to study how the volume of the convex core of

maximal globally hyperbolic manifolds is related to some analytic or geometric quantities

only depending on the two parameters in Teichmüller space provided by Mess’ parameter-

ization.

A first main difference between the quasi-Fuchsian and the Anti-de Sitter setting con-

sists in the fact that the volume of the whole maximal globally hyperbolic Anti-de Sitter

manifold Mh,h′ is always finite. By considering the foliation by constant curvature surfaces

([BBZ11]) of the complement of the convex core, one can show that the volume of Mh,h′

and the volume of its convex core are coarsely equivalent. More precisely, in [BST17] we

proved the following:

Proposition 5.4.1. Given a maximal globally hyperbolic manifold M , let M− and M+ be

the two connected components of the complement of C(M). Then

Vol(M−) ≤ π2

2
|χ(S)| and Vol(M+) ≤ π2

2
|χ(S)| ,

with equality if and only M is Fuchsian.

Using a foliation by equidistant surfaces from the boundary of the convex core, one

can then prove the following formula (see also [BBD+12] and [BB09, Subsection 8.2.3])

which connects the volume of the convex core, the volume of M−, and the length of the
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left earthquake lamination λ:

Vol(C(M)) + Vol(M−) =
1

4
`λ(h) +

π2

2
|χ(S)| . (5.2)

5.4.1 L1-energies and length of earthquake laminations

Let us use h to denote the class of a hyperbolic metric in T (S), and Mh,h′ will denote the

maximal globally hyperbolic manifold corresponding to the point (h, h′) ∈ T (S) × T (S)

in Mess’ parameterization. The main result of [BST17] is the fact that the volume of a

maximal globally hyperbolic Anti-de Sitter manifold roughly behaves like the minima of

certain types of L1-energies of maps f : (S, h) → (S, h′). In fact, in his groundbreaking

preprint [Thu98] about the Lipschitz asymmetric distance, Thurston suggested the interest

in studying other type of Lp-energies, in contrast to the case p =∞ corresponding to the

Lipschitz distance. In [BST17] we considered the functional which corresponds to p = 1:

C1
id(S) 3 f 7→

∫
S
||df ||dAh ,

where C1
id(S) denotes the space of C1 self-maps of S homotopic to the identity, and ||df ||

is the norm of the differential of f , computed with respect to the metrics h and h′ on S.

This functional is usually called L1-energy, or total variation, as it coincides with the total

variation in the sense of BV maps. Our main result is the following:

Theorem 5.4.2. Let Mh,h′ be a maximal globally hyperbolic AdS3 manifold. Then

1

4
inf

f∈C1
id(S)

∫
S
||df ||dAh−

√
2

2
π|χ(S)| ≤ Vol(C(Mh,h′)) ≤

π2

2
|χ(S)|+

√
2

2
inf

f∈C1
id(S)

∫
S
||df ||dAh .

Observe that the volume of the convex core vanishes precisely for Fuchsian manifolds,

that is, on those manifolds containing a totally geodesic spacelike surface. Those mani-

folds correspond to the diagonal in T (S) × T (S), that is, h = h′. In this case, a direct

computation shows that the left-hand-side in the inequality of Theorem 5.4.2 vanishes.

Indeed, the L1-energy is minimized by the identity map f = id : (S, h) → (S, h), and for

this map ||df || =
√

2 at every point.

Theorem 5.4.2 will follow from two more precise statements about the behavior of the

volume of the convex core, namely Theorem 5.4.3 and Theorem 5.4.4 below. The former

uses the relation of Anti-de Sitter geometry, and in particular maximal surfaces (i.e. with

vanishing mean curvature), with minimal Lagrangian maps between hyperbolic surfaces.

The latter relies instead on the connection between pleated surfaces and earthquake maps.

Let us consider first the 1-Schatten energy. Given two hyperbolic surfaces (S, h) and
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(S, h′), this functional, which we denote ESch(·, h, h′), is defined as:

C1
id(S) 3 f 7→

∫
S

tr
(√

df∗df
)
dAh ,

where df∗ is the h-adjoint operator of the differential df , and
√
df∗df denotes the unique

positive, symmetric square root of the operator df∗df . When f is orientation-preserving,

the functional ESch(f, h, h′) actually coincides with the holomorphic L1-energy, which

was already studied in [TV95], and is defined (on the space Diffid(S) of diffeomorphisms

isotopic to the identity) by:

Diffid(S) 3 f 7→
∫
S
||∂f ||dAh ,

where ||∂f || is the norm of the (1, 0)-part of the differential of f . In [TV95], Trapani

and Valli proved that this functional admits a unique minimum, which coincides with the

unique minimal Lagrangian diffeomorphism m : (S, h) → (S, h′) isotopic to the identity

(see also [Lab92] and [Sch93]). Using the Gauss map construction, described above in

this chapter, which associates a minimal Lagrangian diffeomorphism from (S, h) to (S, h′),

isotopic to the identity, to the unique maximal surface in Mh,h′ , we obtained the following

theorem which gives a precise description of the coarse behavior of the volume of the

convex core in terms of the 1-Schatten energy.

Theorem 5.4.3. Let Mh,h′ be a maximal globally hyperbolic AdS3 manifold. Then

1

4
ESch(m,h, h′)− π|χ(S)| ≤ Vol(C(Mh,h′)) ≤

π2

2
|χ(S)|+ 1

4
ESch(m,h, h′) ,

where m : (S, h)→ (S, h′) is the minimal Lagrangian map isotopic to the identity, that is,

the minimum of the 1-Schatten energy functional ESch(·, h, h′) : C1
id(S)→ R.

Again, the left-hand-side vanishes precisely on Fuchsian manifolds, that is, precisely

when Vol(C(Mh,h′)) vanishes as well. We remark that in the proof of Theorem 5.4.3 we

need the fact that the minimal Lagrangian map actually minimizes ESch(·, h, h′) on C1
id(S),

which follows from the theorem of Trapani and Valli, and the convexity of the functional

ESch(·, h, h′). The upper bound in Theorem 5.4.2 then follows from Theorem 5.4.3, by

using that, for any f ∈ Diffid(S) and every x ∈ S, tr(
√
df∗xdfx) ≤

√
2||dfx||.

A more combinatorial version of the relation between maximal surfaces and minimal

Lagrangian maps is the association, already discovered by Mess, of (left and right) earth-

quake maps from (S, h) to (S, h′) from the two pleated surfaces which form the boundary

of the convex core of Mh,h′ . The earthquake theorem, which provides the existence of

a unique left (and a unique right) earthquake map from (S, h) to (S, h′), produces two

measured geodesic laminations. The length of a measured geodesic lamination is then

the unique continuous homogeneous function which extends the length of simple closed
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geodesics.

If we denote by Eλ : T (S) → T (S) the transformation which associates to h ∈ T (S)

the metric h′ = Eλ(h) obtained by a (left or right) earthquake along λ, the following

result — obtained by combining Equation (5.2) with Proposition 5.4.1 — gives a relation

between the volume and the length of (any of the two) earthquake laminations:

Theorem 5.4.4. Given a maximal globally hyperbolic manifold Mh,h′, let λ be the (left or

right) earthquake lamination such that Eλ(h) = h′. Then

1

4
`λ(h) ≤ Vol(C(Mh,h′)) ≤

1

4
`λ(h) +

π2

2
|χ(S)| .

The lower inequality of Theorem 5.4.2 is then a consequence of Theorem 5.4.4 and the

basic observation that the total variation of the earthquake map along the lamination λ

is at most `λ(h) + 2
√

2π|χ(S)|.
Another straightforward consequence of these results is the fact that the length of

the left and right earthquake laminations, and the holomorphic energy of the minimal

Lagrangian map (up to a factor), are comparable. Namely, their difference is bounded

only in terms of the topology of S. For instance:

Corollary 5.4.5. Given two hyperbolic metrics h and h′ on S, if λl and λr are the measured

laminations such that Eλll (h) = h′ and Eλrr (h) = h′, then

|`λl(h)− `λr(h)| ≤ 2π2|χ(S)| .

Corollary 5.4.5 seems to be a non-trivial result to obtain using only techniques from

hyperbolic geometry.

5.4.2 Metrics on Teichmüller space

A result like Brock’s Theorem for maximal globally hyperbolic Anti-de Sitter manifolds,

replacing Bers’ parameterization by Mess’ parameterization, turns out not to be true. The

problem of relating the volume Vol(C(Mh,h′)) to the distance between h and h′ for some

metric structure on T (S) was mentioned in [BBD+12, Question 4.1]. We showed that

the volume of the convex core of a maximal globally hyperbolic manifold M = Mh,h′ is

bounded asymptotically from above by Thurston’s asymmetric distance between (S, h)

and (S, h′) (actually by the minimum of the two asymmetric distances), from below by the

Weil-Petersson distance. Neither of these bounds holds on both sides, hence this seems to

be the best affirmative answer one can give to this question.

Recall that Thurston’s distance dTh(h, h′) is the logarithm of the best Lipschitz con-

stant of diffeomorphisms from (S, h) to (S, h′), isotopic to the identity. This definition

satisfies the properties of a distance on T (S), except the symmetry. As the norm of the

differential ||df ||, which appears in Theorem 5.4.2, is bounded pointwise by the Lipschitz
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constant of f , we derive the following bound from above of the volume with respect to the

minimum of the two asymmetric distances:

Theorem 5.4.6. Let Mh,h′ be a maximal globally hyperbolic AdS3 manifold. Then

Vol(C(Mh,h′)) ≤
π2

2
|χ(S)|+ π|χ(S)| exp(min{dTh(h, h′), dTh(h′, h)}) .

However, the volume of the convex core is not coarsely equivalent to the minimum

of Thurston asymmetric distances, as we can produce examples of manifolds Mhn,h′n in

which the minimum min{dTh(hn, h
′
n), dTh(h′n, hn)} goes to infinity while Vol(C(Mhn,h′n))

stays bounded, thus showing that there cannot be a bound from below on the volume using

any of Thurston’s asymmetric distances. However, in these examples the systole of both

hn and h′n go to 0, and this condition is necessary for this phenomenon to happen. More

precisely, the volume Vol(C(Mh,h′)) is coarsely equivalent to the minimum of Thurston

asymmetric distances if one of the two points h, h′ lie in the ε-thick part of T (S).

In [BST17] we also provided a sequence of maximal globally hyperbolic manifolds

Mhg ,h′g , for the surface Sg of genus g ≥ 2, in which the volume Vol(C(Mhg ,h′g)) has roughly

the same growth as |χ(Sg)| exp(min{dTh(hg, h
′
g), dTh(h′g, hg)}). Hence the growth, with

respect to the genus, of the multiplicative factor in Theorem 5.4.6 is essentially optimal.

On the other hand, we obtain a coarse bound from below on the volume of the convex

core of Mh,h′ by using the Weil-Petersson distance dWP(h, h′).

Theorem 5.4.7. Let Mh,h′ be a maximal globally hyperbolic AdS3 manifold. Then there

exist some positive constants a, b, c > 0 such that

exp

(
a

|χ(S)|
dWP(h, h′)− b|χ(S)|

)
− c ≤ Vol(C(Mh,h′)) .

There are examples in which dWP(hn, h
′
n) remains bounded, but Vol(C(Mhn,h′n)) di-

verges, thus the volume of the convex core of Mh,h′ cannot be bounded from above by the

Weil-Petersson distance between h and h′.

5.5 The para-hyperKähler structure of deformation space

In [Don03], Donaldson highlighted the existence of a natural hyperKähler structure on a

neighborhood of the Fuchsian locus in the deformation space of almost-Fuchsian manifolds,

seen as a neighborhood of the zero section in the cotangent bundle T ∗T (Σ). See also

[Hod05, Tra18, Tra19]. In the article [MST23a], we developed a similar approach in the

context of maximal globally hyperbolic Anti-de Sitter manifolds, and we demonstrated

that the natural structure that appears in this setting is a para-hyperKähler structure.
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5.5.1 Para-hyperKähler structures

Let us introduce the notion of para-hyperKähler structure. For more details on para-

Kähler and para-hyperKähler geometry, see [CFG96, GMV01, AMT09, Vac12]. Recall that

a pseudo-Kähler structure on a manifold M consists of a pair (g, I) where g is a pseudo-

Riemannian metric and I is an integrable almost complex structure (i.e. I2 = −1) such

that g(Iv, w) = −g(v, Iw) and the 2-form ωI(·, ·) := g(·, I·) is closed (hence a symplectic

form). Similarly, a para-Kähler structure consists of an integrable almost para-complex

structure P, which means that

• P2 = 1;

• the P-eigenspaces of 1 and −1 have the same dimension;

• the distributions on M given by the 1 and −1 eigenspaces of P are integrable;

and P is such that g(Pv, w) = −g(v,Pw) and the 2-form ωP(·, ·) := g(·,P·) is closed.

Observe that a direct consequence of the existence of a para-Kähler structure is that

g(P·,P·) = −g(·, ·), hence g is necessarily of neutral signature. Moreover the condition

that dωI = 0 (resp. dωP = 0) is known to be equivalent to ∇I = 0 (resp. ∇P = 0), for ∇
the Levi-Civita connection of g. Finally, a para-hyperKähler structure on a manifold M is

then defined as the data (g, I,J,K), where (g, I) is a pseudo-Kähler structure, (g,J) and

(g,K) are para-Kähler structures, and (I,J,K) satisfy the para-quaternionic relations.

By para-quaternionic relations we mean the identities I2 = −1, J2 = K2 = 1 —

which are implicitly assumed by the condition that I (resp. J, K) is a complex (resp.

para-complex) structure — and moreover IJ = −JI = K.

We remark that, given a para-hyperKähler structure (g, I,J,K), a complex symplectic

form is defined by:

ωC
I := ωJ + iωK .

It is complex in the sense that it is a C-valued symplectic form and satisfies ωC
I (Iv, w) =

ωC
I (v, Iw) = iωC

I (v, w). Similarly, one has two para-complex symplectic forms defined by

ωB
J := ωI + τωK and ωB

K := ωI − τωJ ,

where we denote by B = R ⊕ τR the algebra of para-complex numbers, i.e. τ2 = 1.

Again, these are para-complex in the sense that ωB
J(Jv, w) = ωB

J(v,Jw) = τωB
J(v, w) and

ωB
K(Kv, w) = ωB

K(v,Kw) = τωB
K(v, w).

Only manifolds of dimension 4n can support a para-hyperKähler structure. The first

result of [MST23a] is that MGH(Σ), whose dimension is four if Σ has genus one and

6|χ(Σ)| otherwise, does support a very natural one.

Theorem 5.5.1. Let Σ be a closed oriented surface of genus ≥ 1. Then MGH(Σ) admits

a MCG(Σ)-invariant para-hyperKähler structure (g, I,J,K). When Σ has genus ≥ 2, the
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Fuchsian locus F(Σ) is totally geodesic and (g, I) restricts to (a multiple of) the Weil-

Petersson Kähler structure of Teichmüller space.

The para-hyperKähler structure of MGH(Σ) is extremely natural from the point

of view of AdS geometry, in the sense that all the elements that constitute the para-

hyperKähler structure have (at least one) interpretation in terms of the geometry of MGHC

AdS manifolds. Let us state and explain all these interpretations.

5.5.2 Parameterizations of MGH(Σ)

The first interpretation is in terms of the cotangent bundle of Teichmüller space. There is

a natural map

F :MGH(Σ)→ T ∗T (Σ) ,

which associates to a MGHC AdS manifold (Σ × R, G) the pair (J, q), where J is the

(almost-)complex structure of the first fundamental form of the unique maximal Cauchy

surface in (M,G), and q is the holomorphic quadratic differential whose real part is the

second fundamental form. The map F is a (MCG(Σ)-equivariant) diffeomorphism if Σ

has genus ≥ 2; for genus one it is a diffeomorphism onto the complement of the zero

section. The cotangent bundle T ∗T (Σ) is naturally a complex symplectic manifold; our

first geometric interpretation is the fact that the map F is anti-holomorphic and preserves

the complex symplectic forms up to conjugation.

Theorem 5.5.2. Let Σ be a closed oriented surface of genus ≥ 1. Then

F∗(IT ∗T (Σ),Ω
C
T ∗T (Σ)) =

(
−I,− i

2
ωC
I

)
,

where IT ∗T (Σ) denotes the complex structure of T ∗T (Σ) and ΩC
T ∗T (Σ) its complex symplectic

form.

Let us assume (until the end of this section) that Σ has genus ≥ 2. In [Mes07], Mess

proved that MGH(Σ) is parameterized by the product of two copies of the Teichmüller

space of Σ, by a map

M :MGH(Σ)→ T (Σ)× T (Σ) ,

that essentially gives (under the isomorphism between the isometry group of AdS space and

PSL(2,R)× PSL(2,R)), the left and right components of the holonomy map of a MGHC

AdS manifold (M,G). The manifold T (Σ)×T (Σ) is easily a para-complex manifold, where

the para-complex structure PT (Σ)×T (Σ) is the endomorphism of the tangent bundle for

which the integral submanifolds of the distribution of 1-eigenspaces are the slices T (Σ)×
{∗}, and those for the (−1)-eigenspaces are the slices {∗} × T (Σ). It has moreover a
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para-complex symplectic form compatible with PT (Σ)×T (Σ):

ΩT (Σ)×T (Σ) :=
1

2
(π∗l ΩWP + π∗rΩWP ) +

τ

2
(π∗l ΩWP − π∗rΩWP )

where ΩWP is the Weil-Petersson symplectic form and πl, πr denote the projections on the

left and right factor.

Theorem 5.5.3. Let Σ be a closed oriented surface of genus ≥ 2. Then

M∗(PT (Σ)×T (Σ), 4ΩB
T (Σ)×T (Σ)) = (J, ωB

J) ,

where PT (Σ)×T (Σ) denotes the para-complex structure of T (Σ)× T (Σ) and ΩB
T (Σ)×T (Σ) its

para-complex symplectic form.

Combining Theorems 5.5.2 and 5.5.3 in a particular case, we see that (1/2)ωK equals

on the one hand the pull-back by M of the symplectic form π∗l ΩWP − π∗rΩWP , and on

the other hand the pull-back by F of minus the real part of ΩC
T ∗T (Σ) (i.e. the natural

real symplectic form of the cotangent bundle). This identity has been proved in [SS18,

Theorem 1.14], by completely different methods.

There is another parameterization of MGH(Σ) by the product of two copies of the

Teichmüller space of Σ, which has been introduced in [KS07]. It is given by the map

C :MGH(Σ)→ T (Σ)× T (Σ) ,

which associates to (M,G) the first fundamental forms of the two Cauchy surfaces (one

future-convex, one past-convex) of constant intrinsic curvature −2. These two Cauchy

surfaces of constant curvature are unique ([BBZ11, BS18]), and we rescale their first fun-

damental forms by a factor so as to consider them as hyperbolic metrics. We showed:

Theorem 5.5.4. Let Σ be a closed oriented surface of genus ≥ 2. Then

C∗(PT (Σ)×T (Σ), 4ΩB
T (Σ)×T (Σ)) = (K, ωB

K) ,

where PT (Σ)×T (Σ) denotes the para-complex structure of T (Σ)× T (Σ) and ΩB
T (Σ)×T (Σ) its

para-complex symplectic form.

We remark that there are formal analogues of Theorem 5.5.3 and Theorem 5.5.4 in

genus one, but the corresponding maps M, C :MGH(T 2)→ T (T 2)× T (T 2) do not have

the same geometric interpretation (namely, the holonomy map or the constant curvature

surfaces) as in the higher genus case, which is why we restricted to genus ≥ 2 when stating

these results here.
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5.5.3 The circle action

We now move on to describing a circle action on MGH(Σ). Using the diffeomorphism

F : MGH(Σ) → T ∗T (Σ), the circle action on T ∗T (Σ) given by eiθ · (J, q) = (J, eiθq)

(where J is an almost-complex structure on Σ and q a holomorphic quadratic differential)

induces an action of S1 on MGH(Σ). Let us denote by Rθ : MGH(Σ) → MGH(Σ) the

corresponding self-diffeomorphism. For genus ≥ 2, this action of S1 induces an action on

T (Σ) × T (Σ) by means of the map M. The so obtained S1-action on T (Σ) × T (Σ) has

been studied in [BMS13, BMS15] under the name of landslide flow.

It will be relevant to introduce the function

A :MGH(Σ)→ R

which associates to a MGHC AdS manifold the area of its unique maximal Cauchy surface.

It is easy to see that A is constant on the orbits of the circle action. We showed the

following:

Theorem 5.5.5. Let Σ be a closed oriented surface of genus ≥ 1. The circle action on

MGH(Σ) is Hamiltonian with respect to ωI, and satisfies

R∗θg = g R∗θωI = ωI R∗θω
C
I = e−iθωC

I .

When Σ has genus ≥ 2, the function A is a Hamiltonian function.

We remark that, in terms of the (para-)complex structures I,J,K, the pull-back rela-

tions of Theorem 5.5.5 read:

R∗θI = I R∗θJ = cos(θ)J + sin(θ)K R∗θK = − sin(θ)J + cos(θ)K . (5.3)

In [BMS15], Bonsante, Mondello and Schlenker showed that the landslide flow is Hamil-

tonian with respect to the symplectic form π∗l ΩWP+π∗rΩWP. As a consequence of Theorem

5.5.3 and the first part of Theorem 5.5.5, we thus recovered (by independent methods)

their results and included it in a more general context.

The map A :MGH(Σ) → R that encodes the area of the maximal Cauchy surface is

also applied in the following context. Given a para-Kähler structure (g,P) on a manifold

M , a para-Kähler potential is a smooth function ρ : M → R such that ωP = (τ/2)∂P∂Pρ.

We then proved:

Theorem 5.5.6. Let Σ be a closed oriented surface of genus ≥ 1. Then the para-Kähler

structures (g,J) and (g,K) admit a para-Kähler potential, which coincides up to a constant

with a Hamiltonian function for the circle action.

Observe that, when the genus of the surface Σ is greater than or equal to 2, then the

para-Kähler potential coincides (up to a multiplicative constant) with the area functional
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A, in direct analogy with the hyperKähler structure on the space of almost-Fuchsian

representations described by Donaldson (see [Don03, Section 3.2]).

One could alternatively have used the map C to induce a circle action on T (Σ)×T (Σ).

However, the obtained action is the same as when using M (i.e. the landslide flow), as

a consequence of the observation that M = C ◦ R−π/2. By this relation, Theorem 5.5.4

immediately follows from Theorem 5.5.3 and Theorem 5.5.5.

In fact we can define a one-parameter family of maps

Cθ :MGH(Σ)→ T (Σ)× T (Σ) ,

simply defined by Cθ = C ◦Rθ. An immediate consequence of our previous Theorems 5.5.4

and 5.5.5 is the following identity:

C∗θ (PT (Σ)×T (Σ), 4ΩB
T (Σ)×T (Σ)) = (cos θK− sin θJ, ωI − τ(cos(θ)ωJ + sin(θ)ωK)) . (5.4)

The maps Cθ have the following interpretation purely in terms of harmonic maps

and Teichmüller theory. From the theory of harmonic maps between hyperbolic surfaces

([Sam78, Wol89, Wol91b, Wol91a, Min92]), Teichmüller space admits a parameterization

by the vector space of holomorphic quadratic differentials H0(Σ,K2
J) with respect to a

fixed complex structure J on Σ. The construction goes as follows. To a holomorphic

quadratic differential q, we associate the hyperbolic metric h(J,q) on Σ (unique up to iso-

topy) such that the (unique) harmonic map (Σ, J) → (Σ, h) isotopic to the identity has

Hopf differential q. We now let J vary over T (Σ). Then the map

Hθ := Cθ ◦ F−1 : T ∗T (Σ)→ T (Σ)× T (Σ)

can be interpreted as follows:

Hθ(J, q) = (h(J,−eiθq), h(J,eiθq)) .

There is a completely analogous construction in genus one, by replacing hyperbolic surfaces

by flat tori. As a consequence of Equation (5.4), we obtained:

Theorem 5.5.7. Let Σ be a closed oriented surface of genus ≥ 1. Then

=H∗θ(2ΩB
T (Σ)×T (Σ)) = −<(ieiθΩC

T ∗T (Σ)) .

We remark that the statement above is expressed purely in terms of Teichmüller theory,

and is independent of Anti-de Sitter geometry.
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5.5.4 The character variety

Let us now consider the character variety of the fundamental group π1(Σ) in the isometry

group of AdS space. We have already observed that the isometry group is isomorphic to

PSL(2,R)×PSL(2,R); using the model of Hermitian matrices ([Dan13, Dan14]), it can be

described as the Lie group PSL(2,B), where as usual B denotes the algebra of para-complex

numbers. Using the (para-complex) Killing form, the character variety χ(π1(S),PSL(2,B))

is endowed with a para-complex symplectic form ΩB
Gol, which is defined by adapting the

work of Goldman ([Gol84]) to this context. It is para-complex with respect to the para-

complex structure T induced by multiplication by τ . It can be checked that, under the

isomorphism PSL(2,R) × PSL(2,R) ∼= PSL(2,B), the para-complex structure T corre-

sponds to the para-complex structure P for which the integral distributions of the 1 and

−1 eigenspaces are the horizontal and vertical slices.

Hence if we denote by

Hol :MGH(Σ)→ χ(π1(S),PSL(2,B))

the map that associates to a MGHC AdS manifold its holonomy representation, we obtain

the following corollary of Theorem 5.5.3:

Corollary 5.5.8. Let Σ be a closed oriented surface of genus ≥ 2. Then

Hol∗(T , 4ΩB
Gol) = (J, ωB

J) .

We conclude the overview of our results by a concrete description of the para-complex

symplectic structure ωB
J . In [Tam20], Tamburelli introduced B-valued Fenchel-Nielsen

coordinates. Roughly speaking, these are defined as follows. Let ρ = (ρ+, ρ−) : π1(Σ) →
PSL(2,R)× PSL(2,R) be the holonomy representation of a MGHC AdS manifold. Since

both ρ− and ρ+ are Fuchsian representations, ρ±(α) are loxodromic elements for any non-

trivial α ∈ π1(Σ). As a consequence, we can associate to α a principal axis α̃ in AdS

space, which is the spacelike geodesic with endpoints in RP1 × RP1 given by the pair

of attracting and the pair of repelling fixed points of ρ±(α). Then the Fenchel-Nielsen

coordinates of ρ are (`B,jρ , twB,j
ρ ) (for γj a pants decomposition of Σ), where `B,jρ are para-

complex numbers whose real part corresponds to the translation length and imaginary

part to the bending angle of ρ(γj) on the principal axis γ̃j ; a similar interpretation can be

given for the (para-complex) twist coordinates twB,j
ρ .

These coordinates are an analogue of the complex Fenchel-Nielsen coordinates on the

space of quasi-Fuchsian manifolds, which are Darboux coordinates ([Wol83],[Pla01],[PP08]).

In [MST23a] we showed that an analogous result holds for ωB
J , which we recall corresponds

(up to a multiplicative constant) both to the para-complex sympletic form on T (Σ)×T (Σ)

and to the Goldman form ΩB
Gol.
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Theorem 5.5.9. The B-valued Fenchel-Nielsen coordinates are para-holomorphic for J, and

are Darboux coordinates with respect to the para-complex symplectic form ωB
J .

In other words, we expressed the symplectic form ωB
J , which coincides up to a multi-

plicative constant with the para-complex Goldman form ΩB
Gol, as

ωB
J =

1

4

n∑
j=1

d`B,jρ ∧ dtwB,j
ρ

where `B,jρ and twB,j
ρ are the B-valued length and twist parameters on the curve γj in a

pants decomposition of Σ (where n = (3/2)|χ(Σ)| is the number of such curves).

Finally, we gave a formula for the value of the symplectic form ωB
J along two twist

deformations, generalizing Wolpert’s cosine formula. For this purpose, given α, β ∈ π1(Σ)

two intersecting closed curves, the principal axes of ρ(α) and ρ(β) admit a common or-

thogonal geodesic of timelike type. Then we define the B-valued angle as the para-complex

number whose imaginary part is the signed timelike distance between the two axes, and

the real part is the angle between one principal axis and the parallel transport of the other,

along the common orthogonal geodesic.

Theorem 5.5.10. Let ρ = (ρ+, ρ−) : π1(Σ)→ PSL(2,R)× PSL(2,R) be the holonomy of a

MGHC AdS manifold, and let α, β be non-trivial simple closed curves. Then

ωB
J

(
∂

∂twB,α
ρ

,
∂

∂twB,β
ρ

)
=

1

4

∑
p∈α∩β

cos(dB(α̃ρ, β̃ρ)) ,

where α̃ρ and β̃ρ are the principal axes of ρ(α) and ρ(β) on AdS space, and dB(α̃ρ, β̃ρ) is

their B-valued angle.
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Minkowski geometry

Recall that Minkowski space of dimension n + 1 (denoted Rn,1) is the flat, geodesically

complete Lorentzian manifold of signature (n, 1). In this chapter we will outline several

results of existence and uniqueness of spacelike hypersurfaces in Rn,1 of constant mean

curvature (Section 6.3) and constant Gaussian curvature (Section 6.2, for n = 2), on their

geometric properties such as the completeness (Section 6.2), and mention some general-

izations (work in progress) for constant scalar curvature hypersurfaces in any dimension

(Section 6.3 again). Again, based on the pioneering work of Mess, the study of surfaces in

R2,1 is intimately related to, and has applications for, the Teichmüller theory, as will be

presented in Section 6.4.

6.1 Some notions from Lorentzian geometry

Let us provide some common background for the results of this chapter. In the following,

we will focus our attention on entire spacelike hypersurfaces in Rn,1, that is, graphs of

functions f : Rn → R with |Df | < 1. Among spacelike hypersurfaces, entireness is

equivalent to being properly embedded, and thus is invariant by the action of the isometry

group of Rn,1. The fundamental notion for all classification results is the domain of

dependence D(Σ) of a spacelike hypersurfaces Σ. Namely, D(Σ) is the set of points p ∈ Rn,1

such that every inextensible causal curve though p meets Σ. The domain of dependence of

an entire spacelike hypersurface can be Rn,1, a half-space bounded by a null hyperplane,

or — the most interesting case in our context — a regular domain, a notion introduced in

[Bon05], meaning an open domain obtained as the intersection of at least two half-spaces

(that we will suppose to be future half-spaces) bounded by non-parallel null hyperplanes.

There is an equivalent, more analytic, way to the study of the asymptotics of entire

hypersurfaces, under the assumption of convexity of Σ. To explain this, let us introduce

a fundamental object for the present chapter, namely the null support function. Given an

entire convex spacelike surface Σ in R2,1, expressed as the graph of a convex, 1-Lipschitz

76
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function f : R2 → R, we define the function φ : S1 → R ∪ {+∞} by

φ(θ) = sup
(x,y)∈R2

(x cos θ + y sin θ − f(x, y)) = sup
p∈Σ
〈p, ~θ〉 ,

which is easily seen to be well-defined and lower-semicontinuous as a consequence of con-

vexity of f . Here and in the following, we use the notation ~θ := (cos θ, sin θ, 1).

The geometric interpretation of the null support function is the following. Given

θ ∈ S1, the null affine plane P defined by the equation 〈~θ, ·〉 = φ(θ) is a support plane

for Σ, meaning that every translate of P in the future intersects Σ, while every translate

in the past is disjoint from Σ. The intersection of the future half-spaces bounded by the

null support planes of equation 〈~θ, ·〉 = φ(θ), as θ varies in S1, is exactly the domain of

dependence D of Σ.

6.2 Constant Gaussian curvature and the completeness problem

Let us now describe surfaces of constant Gaussian curvature in R2,1. It is easily shown

that every complete spacelike surface in R2,1 is entire, meaning that it is the graph of a

function globally defined on the horizontal plane. Moreover, if the intrinsic curvature is

non-positive, then (up to a reflection in a horizontal plane) such function is convex. The

very first example is the well-known hyperboloid model of the hyperbolic plane H2, namely

the future unit sphere in R2,1. A very natural question — still open as of now — is then a

classification of all isometric embeddings of H2 in R2,1 — or equivalently, the classification

of all complete spacelike surfaces of constant curvature −1 in R2,1. It turns out that the

classification of entire spacelike surfaces of constant curvature −1, which form a larger

class, is more easily achieved, and this is presented in Subsection 6.2.2, which contains the

results of [BSS19]. Based on these results, the classification of isometric embeddings of

H2 then boils down to characterizing completeness of the induced metric, which is a very

difficult problem. Some progress has been made in [BSS22], whose results are presented

in Subsection 6.2.3.

6.2.1 Previous results

The first non-umbilic examples of complete hyperbolic surfaces in R2,1 have been obtained

by Hano and Nomizu in 1983 ([HN83]). By considering “surfaces of revolution” with

spacelike axis, they reduced the problem of finding a function whose graph has constant

intrinsic curvature −1 to an ordinary differential equation, whose maximal solutions give

a one-parameter family of non-equivalent surfaces. It turns out that these surfaces are

complete, and thus intrinsically isometric to H2.

Another large source of examples arose from the work [BBZ11] of Barbot-Béguin-

Zeghib: they showed that for every g ≥ 2 and every representation ρ : π1(Sg) →
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Isom(H3) ∼= O(2, 1) n R2,1 (Sg being a closed orientable surface of genus g) whose lin-

ear part is Fuchsian, there exists a unique ρ-equivariant embedding of constant curvature

−1. By cocompactness, the induced metric is complete and therefore isometric to H2;

these surfaces are non-equivalent to the hyperboloid unless ρ has a global fixed point.

In [Li95], Li showed that for every smooth function φ on the circle, there exists a

hyperbolic surface having null support function φ, which is moreover complete. The results

of [Li95] actually hold in higher dimension, for hypersurfaces of constant Gauss-Kronecker

curvature. In dimension three, the existence part of Li’s results has been improved in

[GJS06], for Lipschitz continuous φ, and in [BS17] for φ lower semicontinuous and bounded.

Furthermore, in [BS17] we proved that this construction gives a bijection between the

set of (convex, which we always assume here) entire hyperbolic surfaces in R2,1 with

bounded second fundamental form and the (infinite-dimensional!) vector space of functions

φ : S1 → R ∪ {+∞} having the Zygmund regularity. Since an entire hyperbolic surface

with bounded second fundamental form is necessarily complete, the aforementioned results

provide another large class of isometrically embedded copies of the hyperbolic plane, non-

equivalent to one another.

6.2.2 Entire surfaces

The work [BSS19], improving the above results of the literature, characterized all entire

hyperbolic surfaces in terms of their null support functions, by showing that the above

construction gives a bijection between the set of entire hyperbolic surfaces in R2,1 and the

set of lower semicontinuous functions φ : S1 → R∪{+∞} which are finite on at least three

points.

Theorem 6.2.1. For any lower semicontinuous functions φ : S1 → R ∪ {+∞} which is

finite on at least three points, there exists a unique entire spacelike surface in R2,1 whose

first fundamental form has constant curvature −1 and whose null support function is φ.

Observe that the conditions of φ being lower semicontinuous and finite on at least three

points are necessary conditions (for any convex entire spacelike surface), hence Theorem

6.2.1 is a full classification of entire hyperbolic surfaces in R2,1. Geometrically, this con-

ditions means that the domain of dependence is a regular domain which is not the future

of a spacelike line — which is the case when φ is finite on two points only.

Clearly, Theorem 6.2.1 could be restated by choosing any negative value of the (con-

stant) curvature, up to applying a homothecy. We proved that, when the curvature varies

in (−∞, 0) the corresponding surfaces provide a foliation of their domain of dependence:

Theorem 6.2.2. Any regular domain in R2,1 which is not the future of a spacelike line is

uniquely foliated by entire surfaces of constant intrinsic curvature K, for K ∈ (−∞, 0)
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6.2.3 Completeness

Based on Theorem 6.2.1, the problem of characterizing all smooth isometric embeddings

of the hyperbolic plane into R2,1 becomes equivalent to determining those lower semicon-

tinuous functions φ which correspond to complete hyperbolic surfaces.

It is worth pausing to point out, once more, that an entire spacelike surface may be

incomplete. Roughly speaking, this may happen if the surface approaches a null direction

quickly enough. For instance, there exists a surface of revolution with respect to a lightlike

axis, whose induced metric is hyperbolic and is incomplete, being intrinsically isometric

to a half-plane in H2 ([BS17, Appendix A]). Its null support function is equal to minus

the characteristic function of the point in S1 corresponding to the lightlike axis.

In [BSS22] we obtained several necessary and sufficient conditions for the completeness

of an entire surface Σ in R2,1, under the assumption that the curvature of Σ is, more

generally, bounded above and below by negative constants. Our first results are two

conditions on the null support function which guarantee completeness of a convex entire

spacelike surface.

Theorem 6.2.3 (Sequentially sublinear condition). Let φ : S1 → R ∪ {+∞} be lower semi-

continuous and finite on at least three points. Suppose that for each θ0 ∈ S1 at which φ is

finite, there exists M > 0 and a sequence θi → θ0 such that

φ(θi) < φ(θ0) +M |θi − θ0| . (Comp)

If Σ is a convex entire spacelike surface in R2,1 with curvature bounded below and null

support function φ, then Σ is complete.

Throughout, we identify S1 with R/2πZ in the standard way, and define |θ− θ′| to be

distance in R/2πZ. This is not an essential point, as the statement remains true for any

reasonable notion of distance in the circle.

We remark the condition (Comp) has a simple geometric interpretation in terms of the

domain of dependence D of the surface Σ which, as explained above, is entirely determined

by the function φ on S1. Namely, (Comp) is equivalent to the condition that, whenever

D has a null support plane P (which is of the form 〈~θ, ·〉 = φ(θ) for some θ ∈ S1), there

exists a null line in P which does not intersect ∂D.

If we restrict to constant curvature −1, Theorem 6.2.3 implies that for any function φ

satisfying (Comp), the entire hyperbolic surface with null support function φ (which exists

and is unique by Theorem 6.2.1) is complete, and hence gives an isometric embeddings of

the hyperbolic plane in R2,1.

We stress that a function φ satisfying the condition (Comp) at every point can be

highly discontinuous, and can take value +∞ on large portions of the circle. For instance,

by virtue of Theorem 6.2.3 the function taking value 0 on any Cantor set in S1, and +∞
elsewhere, is the null support function of a complete hyperbolic surface.
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Hence Theorem 6.2.3 is a remarkable improvement with respect to the state-of-the-art,

since so far the most general result in this direction, which follows from [BS17], is that

an entire hyperbolic surface with Zygmund continuous null support function is complete.

Nevertheless, Theorem 6.2.3 is not sharp, as showed by the next statement, which gives

another criterion for completeness.

Theorem 6.2.4 (Subloglogarithmic condition). Let φ : S1 → R ∪ {+∞} be lower semi-

continuous and finite on at least three points, and let λ > 0. Suppose that that for each

θ0 ∈ S1 at which φ is finite, there is a one-sided neighbourhood U of θ0 and such that

φ(θ) ≤ φ(θ0) +
λ

4
|θ − θ0| log(− log |θ − θ0|) (Comp’)

for every θ ∈ U . If Σ is a convex entire spacelike surface in R2,1 with curvature bounded

below by −λ2 and null support function φ, then Σ is complete.

By one-sided neighbourhood of θ0, we mean that U contains an interval either of the

form (θ0 − ε, θ0] or [θ0, θ0 + ε) for ε > 0.

In the other direction, we state now two conditions which are sufficient to guarantee

incompleteness.

Theorem 6.2.5 (Power function condition). Let φ : S1 → R∪{+∞} be lower semicontinuous

and finite on at least three points. Suppose that there exist θ0 ∈ S1 at which φ is finite, a

neighborhood U of θ0, and constants ε > 0 and 0 < α < 1 such that

φ(θ)− φ(θ0) > ε|θ − θ0|α (Inc)

for every θ ∈ U . If Σ is a convex entire spacelike surface in R2,1 with null support function

φ and curvature bounded above by a negative constant, then Σ is incomplete.

For example, taking any α, the conclusion holds if φ has a two-sided jump at θ0,

meaning that φ(θ0) < lim infθ→θ0 φ(θ).

Theorem 6.2.6 (One-sided superlogarithmic condition). Let φ : S1 → R ∪ {+∞} be lower

semicontinuous and finite on at least three points. Suppose that there exist θ0 ∈ S1 at

which φ is finite, a neighbourhood U of θ0, and ε > 0 such thatφ(θ) = +∞ if θ is on one side of θ0

φ(θ) ≥ φ(θ0) + ε|(θ − θ0) log |θ − θ0|| if θ is on the other one side of θ0.
(Inc’)

for every θ ∈ U . If Σ is a convex entire spacelike surface in R2,1 with null support function

φ and curvature bounded above by a negative constant, then Σ is incomplete.

Taking together our completeness and incompleteness theorems, we have a narrow

window of local behaviors of φ for which we cannot yet determine completeness, such as
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φ(θ) = |θ log |θ|| near θ = 0. From our perspective, the still-open problem of classifying

isometric immersions of the hyperbolic plane by their asymptotic behavior amounts to

closing this window.

6.3 Constant mean and scalar curvature

The study of spacelike hypersurfaces of constant mean curvature (CMC in short) in

Minkowski space Rn,1 has been widely developed since the 1980s, see for instance [Tre82,

Mil83, BS83, CT88, CT90]. An important motivation is that among spacelike hyper-

surfaces in Rn,1, CMC hypersurfaces are precisely those for which the Gauss map, with

values in the hyperbolic space Hn, is harmonic. Employing this idea for n = 2, many

interesting results have been obtained on harmonic maps from C or D to H2 (see [CT88,

AN90, Wan92, CT93, HTTW95, GMM03]). More recently several results appeared on

CMC hypersurfaces in Rn,1 admitting a co-compact action, thus giving rise to CMC com-

pact Cauchy hypersurfaces in certain flat Lorentzian manifolds, in [And02a, ABBZ12], for

n = 2 in [BBZ07, And05], and for manifolds with conical singularities in [KS07, CT19].

The generalization of this problem to general Lorentzian manifolds satisfying some ad-

ditional conditions is also of importance to general relativity, for example [Ger83b]; see

[Bar87] or Section 4.2 of [Ger06a] for a summary.

While the only entire hypersurfaces of vanishing mean curvature are spacelike planes

([CY76], also [Cal70] for n ≤ 4), hypersurfaces of constant mean curvature H 6= 0 have a

much greater flexibility, with many examples produced in [Tre82, CT90]. Still there is some

rigidity: Cheng and Yau, in the same article [CY76], show that entire CMC hypersurfaces

have complete induced metric and are convex (up to applying a time-reversing isometry).

6.3.1 Classification of entire CMC hypersurfaces

Perhaps surprisingly, although partial results were obtained in [Tre82, CT90], to our

knowledge the literature lacked a complete classification of entire CMC hypersurfaces

in Minkowski space.

In [BSS23], we proved a classification result.

Theorem 6.3.1. For any lower semicontinuous functions φ : S1 → R ∪ {+∞} which is

finite on at least two points and any H > 0, there exists a unique entire hypersurface of

constant mean curvature H in R2,1 whose null support function is φ.

Unlike the case of constant Gaussian curvature (for n = 2), here φ is allowed to be

finite on two points only, in which case the domain of dependence is the intersection of

the future of two lightlike hyperplanes, and the corresponding CMC hypersurface is the

product of a hyperbola and a (n−1)-dimensional spacelike affine subspace. Geometrically,

Theorem 6.3.1 can be rephrased by saying that for every regular domain D in Rn,1 and
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any H > 0, there exists a unique entire hypersurface Σ ⊂ Rn,1 of constant mean curvature

H such that the domain of dependence of Σ is D. We also proved that, as H varies in

(0,+∞), the entire hypersurfaces of constant mean curvature H analytically foliate D:

Theorem 6.3.2. Any regular domain in Rn,1 is analytically foliated by entire hypersurfaces

of constant mean curvature H, for H ∈ (0,+∞)

The result of [CT90] is an important predecessor to Theorem 6.3.1. To translate their

result into the language of null support functions, say that a function valued in R∪{+∞} is

nearly continuous if the set on which it is finite is closed and it continuous when restricted

to that set. Then Choi and Treibergs prove that if ϕ is a lower semicontinuous function on

Sn−1 which is nearly continuous and finite on at least two points, then there exists an entire

CMC hypersurface with null support function ϕ. Compared to [CT90], our contribution

in [BSS23] was to extend the existence theorem to all lower semicontinuous functions finite

on at least two points and crucially to prove uniqueness.

6.3.2 Constant scalar curvature

In a work in preparation with Pierre Bayard ([BS]), we are currently studying foliations

of regular domains by hypersurfaces of constant scalar curvature. We expect to be able

to prove that for any prescribed (negative) value c of the scalar curvature, every regular

domain D which is the intersection of at least three non-parallel hyperplanes admits a

hypersurface with constant scalar curvature c whose domain of dependence is D. Unique-

ness is more tricky to achieve in this context, and at the moment we expect to be able

to obtain uniqueness under the assumption that the corresponding null support function

φ is in C0(Sn−1,R). Also the foliation result will probably hold under this assumption.

Since this condition is satisfied in the cocompact case, this result will be an improvement

of [Smi18], which proves the foliation result by constant scalar curvature hypersurfaces in

the cocompact case for R3,1. Finally, it is still an open question whether the assumption

that φ is finite on at least three points will be a necessary condition. Indeed, although

this seems unlikely, a priori there might exist hypersurfaces of constant scalar curvature

whose null support function is finite on precisely two points — equivalently, whose domain

of dependence is the future of a spacelike (n− 1)-dimensional affine subspace.

6.4 Induced metrics, and minimal Lagrangian maps again

As discussed in Section 6.2.3, entire surfaces of constant Gaussian curvature −1 are not

necessarily complete. Surprisingly, Theorem 6.3.1 on constant mean curvature surfaces (in

dimension 2 + 1) leads to applications on hyperbolic surfaces (i.e. of constant Gaussian

curvature), and to minimal Lagrangian maps, that we obtained in [BSS23].

For this purpose, let us first mention a relationship, in dimension 2 + 1, between

constant mean curvature and constant Gaussian curvature surfaces. This rests in the
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classical observation that if Σ has constant intrinsic curvature -1, then the surface which

lies at Lorentzian distance one from Σ to the convex side has constant mean curvature

H = 1/2.

Now, as mentioned before, among immersed spacelike surfaces Σ in R2,1 hyperbolic

surfaces are exactly those whose Gauss map G is a minimal Lagrangian local diffeomor-

phism; that is, the graph of G is a minimal Lagrangian surface in Σ×H2. If moreover Σ

is embedded, then G is a diffeomorphism onto its image.

Our first result here is a description of the induced metric of entire surfaces of constant

Gaussian curvature, when they are incomplete. Let us first introduce some definitions.

First, a straight convex domain in H2 is the interior of the convex hull of a subset of

∂∞H2 consisting of at least 3 points. Second, let (S, h) and (S′, h′) be simply connected

hyperbolic surfaces. We say that a smooth map f : (S, h)→ (S′, h′) is realizable in R2,1 if

there exists an isometric immersion σ : (S, h)→ R2,1 and a local isometry d : (S′, h′)→ H2

such that d ◦ f = Gσ where Gσ : S → H2 is the Gauss map of σ. We say it is properly

realizable if moreover the immersion is proper, which is equivalent to its image being entire.

It is known that realizability of f is equivalent to being a minimal Lagrangian local

diffeomorphism. The following theorem from [BSS23] gives a characterization of properly

realizable minimal Lagrangian maps, in terms of their graphs in the Riemannian product

of (S, h) and (S′, h′).

Theorem 6.4.1. Let f : (S, h) → (S′, h′) be a diffeomorphism between simply connected

hyperbolic surface. Then f is properly realizable in R2,1 if and only if the graph of f is

a complete minimal Lagrangian surface in (S × S′, h ⊕ h′). In this case, both (S, h) and

(S′, h′) are isometric to straight convex domains in H2.

Observe that from the definition, it is easy to see that the inverse of a minimal La-

grangian diffeomorphism is again minimal Lagrangian. The following is then a straight-

forward corollary of Theorem 6.4.1:

Corollary 6.4.2. Let f : (S, h)→ (S′, h′) be a minimal Lagrangian diffeomorphism between

simply connected hyperbolic surface. Then f is properly realizable in R2,1 if and only if

f−1 is properly realizable in R2,1.

Let us spend a few words here to outline the proof of Theorem 6.4.1. The basic

observation is that for any entire hyperbolic surface Σ in R2,1, the surface Σ+ at Lorentzian

distance one with constant mean curvature H = 1/2 is still entire, and the two have the

same domain of dependence. A consequence of the uniqueness in Theorems 6.3.1 and 6.2.1,

is that the converse is almost always true: if Σ+ is any entire CMC-(1/2) surface except for

the trough, then the surface Σ at Lorentzian distance one to the past is still entire (with

the same domain of dependence). To prove the first part of Theorem 6.4.1, it then suffices

to observe that the first fundamental form of Σ+ is bi-Lipschitz equivalent to the induced

metric on the graph of the minimal Lagrangian map in the Riemannian product, and by
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the Cheng and Yau completeness theorem, entireness of the equidistant CMC-(1/2) surface

Σ+ is equivalent to completeness of its first fundamental form. The second part of Theorem

6.4.1 follows applying the fact that the image of the Gauss map of any entire hyperbolic

surface is a straight convex domain, which we have proved in [BSS19], and therefore the

image of a minimal Lagrangian local diffeomorphism (injective but not surjective) from H2

to itself is a straight convex domain. Incidentally, in [FS21] we generalized this last results

from minimal Lagrangian maps to a larger class of maps, called one-harmonic, when the

source metric is allowed to be a metric of (non-constant) negative curvature; moreover, in

[FS20] we further exploited the relations between Minkowski geometry and Teichmüller

theory, leading to a new proof, and a generalization to a broader setting, to the classical

Wolpert formula that expresses the Weil-Petersson symplectic form on two infinitesimal

twists as the sum of the cosine of the angles of intersection.

To conclude, in [BSS23] we also showed that being a straight convex domain is not

only a necessary condition, but also a sufficient condition for the induced metric.

Theorem 6.4.3. A hyperbolic surface can be embedded isometrically and properly in R2,1 if

and only if it is isometric to a straight convex domain.

As a final comment, the hypothesis of entireness is clearly essential in Theorem 6.4.3, as

any domain in H2 can be realized without the entireness assumption. But we remark here

that the situation is even subtler, since also hyperbolic surfaces which are not isometric

to a subset of H2 can be embedded as non-entire surfaces. In fact, in [BS17, Appendix

A], an example of non-entire surface in R2,1 intrinsically isometric to the universal cover

of the complement of a point in H2 is constructed.
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Chapter 7

Second topological interlude:

geometric transition

In this chapter, we will discuss some phenomena of geometric transition in the context of

the transition between hyperbolic and Anti-de Sitter structures introduced in Danciger’s

PhD thesis [Dan11]. This transition goes through the intermediate half-pipe geometry,

which is also closely related with Minkowski geometry and, in dimension 3, with Teich-

müller theory. In Section 7.1 we will discuss some novel examples of geometric transition

on (singular) manifolds, that I constructed with Stefano Riolo. Section 7.2 will study the

behaviour exhibited by these examples on the character variety. Finally, Section 7.3 will

mention recent work in progress with Christian El Emam, Filippo Mazzoli and Andrea

Tamburelli which studies a phenomenon induced by Danciger’s geometric transition, but

at the level of deformation spaces, related to the para-hyperKähler structure of [MST23a]

discussed in Section 5.5.

7.1 Examples of geometric transition on manifolds

A major motivation for the study of geometric transition comes from a phenomenon called

degeneration of hyperbolic structures, introduced in Thurston’s famous notes [Thu79].

Several contribuitions have then been given on this topic [Hod86, Por98, HPS01, Por02,

Ser05, PW07, Por13, Koz13, LMA15a, LMA15b, Koz16], which plays an important role

in the proof of the celebrated Orbifold Theorem [BLP05, CHK00].

As an example, for some closed hyperbolic 3-orbifolds X , singular along a knot Σ ⊂ X
with cone angle 2π

m , the following holds. There is a path θ 7→ Xθ of hyperbolic cone-

manifold structures on X with singular locus Σ and cone angle θ ∈
[

2π
m , 2π

)
, such that Xθ

collapses to a lower-dimensional orbifold as θ → 2π. This holds, for instance, when X is an

exceptional Dehn filling of the figure-eight knot complement admitting a Seifert fibration

X → N with base a hyperbolic 2-orbifold N . As θ → 2π, the cone-manifold Xθ collapses to

N , whose hyperbolic structure is said to regenerate to 3-dimensional hyperbolic structures.

86
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The familiar idea of going from spherical to hyperbolic geometry, through Euclidean

geometry, was known since Klein [AP15]. This is a continuous process inside projective

geometry, seen as a common“ambient”geometry. This phenomenon, called geometric tran-

sition, has been recently studied in greater generality by Cooper Danciger and Wienhard

[CDW18] (see also [Tre19]) through the notion of limit geometry. For example, among

others, Euclidean geometry is a limit of both spherical and hyperbolic geometries inside

projective geometry.

7.1.1 Some constructions in dimension three

Let us come back to the hyperbolic cone 3-manifolds Xθ collapsing to the hyperbolic 2-

orbifold N . The work of Danciger [Dan11, Dan13, Dan14] shows that in many such cases

the hyperbolic structure of N regenerates to anti-de Sitter (AdS for short, the Lorentzian

analogue of hyperbolic geometry) structures on X , where the singular locus Σ is a space-

like geodesic. Moreover, the two deformations are joined continuously via projective ge-

ometry so as to have geometric transition. To this purpose, Danciger introduced the so

called half-pipe geometry, which is a limit geometry [CDW18] inside projective geometry

of both hyperbolic and anti-de Sitter geometry. Half-pipe space naturally identifies with

the space of spacelike hyperplanes in Minkowski space R1,n−1, and its group of transfor-

mations, which is a Chabauty limit of both Isom(Hn) and Isom(AdSn), is isomorphic to

Isom(R1,n−1) by means of this duality. Suitable projective transformations are used to

“rescale” the hyperbolic and AdS metric along the direction of collapse, thus obtaining

geometric transition via half-pipe geometry.

In [Dan13, Theorem 1.1], Danciger provides an infinite class of Seifert 3-manifolds X
(unit tangent bundles of some hyperbolic 2-orbifolds) supporting such a kind of geomet-

ric transition. Also, [Dan13, Theorem 1.2] is a regeneration result of half-pipe structures

under a cohomological condition: the 1-dimensionality of the twisted cohomology group

H1
Ad ρ(π1(XrΣ), so(1, 2)), where ρ : π1(XrΣ)→ Isom(H2) is the representation associated

to the degenerate structure and Ad: Isom(H2) → Aut(so(1, 2)) is the adjoint representa-

tion. A few more examples, constructed by hands, appeared in my proceedings article

[Sep19a].

My PhD student Farid Diaf, in his first article [Dia23b], has constructed a very large

source of examples, obtained as doubles of hyperbolic/Anti-de Sitter/half-pipe convex

cores such that the pleating locus is a rational lamination. His result shows that, for any

closed oriented surface (possibly with a finite number of points removed) S, and any pair

of filling rational laminations λ1 and λ2, S×S1 \(λ1×{p1}∪λ2×{p2}) admits a geometric

transition from an Anti-de Sitter structure to a hyperbolic structure, going through a half-

pipe structure, with conical singularities at λ1 and λ2 (and cusp structures in the product

of S1 and a neighbourhood of the punctures). This results exhibits a recipe to construct

a very large class of examples, although the singularities occur on a link instead of a
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knot. Moreover, in his second article [Dia23a], Farid exploited more deeply the relation of

three-dimensional half-pipe geometry with Teichmüller theory. He achieved a number of

infinitesimal earthquake theorems by means of applications of half-pipe geometry, relying

on the idea that convex cores in half-pipe geometry lead to infinitesimal earthquakes, sim-

ilarly to the manner by which convex cores in Anti-de Sitter geometry lead to earthquakes

between hyperbolic surfaces.

7.1.2 A four-dimensional example

It seems natural to ask whether these transition phenomena are purely three-dimensional,

or if they can occur also in higher dimension, where hyperbolic structures are typically

more rigid. In the paper [RS22b] we answered affirmatively, by exhibiting novel examples

in dimension four. We indeed built some examples of geometric transition from hyperbolic

to AdS structures. The construction is explicitly obtained by gluing copies of a hyperbolic

or AdS collapsing 4-polytope — which, however, is different from the doubling of a convex

core.

The study of deformations of 4-dimensional hyperbolic cone-manifolds is quite recent,

and in general very little is known on this topic. In [MR18, Theorem 1.2], Riolo and

Martelli provided the first example of degeneration of hyperbolic cone structures on a 4-

manifold to a 3-dimensional hyperbolic structure. We showed in [RS22b] that in this case

there is geometric transition from hyperbolic to AdS structures, and provided an infinite

class of such examples. Precisely, we showed the following:

Theorem 7.1.1. Let N be a hyperbolic 3-manifold that finitely orbifold-covers the ideal

right-angled cuboctahedron. There exists a C1 family {σt}t∈(−ε,ε] of simple projective cone-

manifold structures on the 4-manifold

X = N × S1,

singular along a compact foam Σ ⊂ X , such that σt is conjugated to a cusped, finite-volume,

• hyperbolic orbifold structure with cone angles π as t = ε,

• hyperbolic cone structure with decreasing cone angles αt ∈ [π, 2π) as t > 0,

• half-pipe structure with spacelike singularity as t = 0,

• anti-de Sitter structure with spacelike singularity of increasing magnitude βt ∈ (−∞, 0)

as t < 0.

As t → 0+ (resp. t → 0−), we have αt → 2π (resp. βt → 0) and the induced hyperbolic

(resp. AdS) structures on X r Σ degenerate to the complete hyperbolic structure of N .

Similarly to Danciger’s [Dan13, Theorem 1.1], but in higher dimension, there is a circle

bundle over a hyperbolic orbifold (a 2-orbifold in his case, a 3-manifold in [RS22b]), and
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geometric transition from hyperbolic to AdS singular structures on the total space of the

bundle with collapse to the base. Let us briefly explain some terminology used in the

statement of Theorem 7.1.1.

The cuboctahedron is a well-known uniform polyhedron whose ideal hyperbolic counter-

part C ⊂ H3 is right-angled. As such, the polyhedron C can be seen as a cusped hyperbolic

3-orbifold. Simple projective cone-manifolds are singular real projective manifolds locally

modelled on the double of a simple polytope in projective space. The singular locus Σ ⊂ X
of an n-dimensional simple projective cone-manifold X is an (n− 2)-complex with generic

singularities: if n = 1, 2, 3 or 4, the set Σ is empty, discrete, a trivalent graph or a foam,

respectively. A foam is a 2-complex locally modelled on the cone over the 1-skeleton of

the tetrahedron. The singular locus in Theorem 7.1.1 is not a surface, as it has edges

and vertices. However foams are quite natural objects in dimension four (like trivalent

graphs in 3-manifolds). To the best of our knowledge, it is not known whether there can

even exist deformations of 4-dimensional, finite-volume, hyperbolic cone-manifolds with

singular locus an embedded surface.

The holonomy of a meridian γ ∈ π1(X r Σ) of a 2-stratum of Σ has a totally geodesic

2-plane as fixed point set. We have a rotation in H4 of angle αt when t > 0, and a Lorentz

boost in AdS4 of magnitude βt as t < 0. In the half-pipe case, we have a transformation

that can be interpreted as an infinitesimal rotation (resp. boost) in H4 (resp. AdS4).

It is worth remarking that the cone-manifolds of Theorem 7.1.1 are non-compact, but

of finite volume. Nevertheless, the singularity Σ is compact, or in other words, it does

not enter into the ends of the cone-manifolds. These ends are (non-singular) cusps in a

suitable sense. As a direct consequence of our methods, we achieve a nice description of the

geometry of the cusps. A section of the cusps will indeed naturally support a geometric

transition from Euclidean to Minkowski (non-singular) structures — going through an

intermediate geometry which is a “flat version” of half-pipe geometry and is the so-called

Galilean geometry [Yag79]. Finally, we remark that the statement of Theorem 7.1.1 can

be made slightly more general by our methods, just assuming that N is a cuboctahedral

manifold, namely a hyperbolic manifold tessellated by ideal right-angled cuboctahedra.

7.1.3 A key ingredient: the Kerckhoff-Storm polytope

The essential ingredient for the proof of Theorem 7.1.1 is a deforming 4-polytope Pt ⊂ H4

parametrised by t ∈ (0, 1], introduced by Kerckhoff and Storm [KS10]. For a particular

choice of the 3-manifold N , the hyperbolic cone structures σt that degenerate were shown

to exist by Martelli and Riolo in [MR18, Theorem 1.2] by gluing eight copies of Pt.
A fundamental property of Pt is that most of its dihedral angles are right for all values

of t, while the remaining dihedral angles are all equal and tend to π as t → 0, i.e. when

Pt collapses to the aforementioned cuboctahedron. The presence of many right angles is

essential in order to glue copies of Pt without creating a too complicated singular locus.
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To prove Theorem 7.1.1, we first showed that the path of hyperbolic polytopes extends

for negative times t ∈ (−1, 0) to a path of AdS polytopes with the same combinatorics of

Pt ⊂ H4 with t ∈ (0, ε], and sharing similar properties on the dihedral angles and on the

collapse. A remarkable difference is that, since the Anti-de Sitter metric is Lorentzian,

some of the bounding hyperplanes are spacelike, and some others timelike.

The construction is however quite complicated and involves several computations. To

prove that the combinatorics of the AdS polytopes remains constant, we needed to imple-

ment a Sage worksheet [RS]. The proof of the analogous property on the hyperbolic side

[KS10, MR18] circumvented this amount of computations relying on Vinberg’s theory of

hyperbolic polytopes with non-obtuse dihedral angles.

By opportunely rescaling Pt inside projective space along the direction of collapse,

as suggested by the work of Danciger, we showed that the resulting path of rescaled

projective polytopes extends as t = 0 to a half-pipe 4-polytope. This whole deformation

can be interpreted as a geometric transition of “cone-orbifold” structures. More precisely,

the subset

P×t ⊂ Pt

obtained by removing the ridges (the codimension-2 faces) with non-constant dihedral

angles has a natural structure of hyperbolic (when t > 0) or AdS (when t < 0) orbifold. To

show that these structures are linked by geometric transition, we construct an opportune

half-pipe orbifold structure on the “rescaled limit” of P×t as t→ 0.

Then, inspired by [MR18], we glue several copies of Pt in the following way. Any

d-sheeted orbifold cover N → C of the the ideal right-angled cuboctahedron naturally

induces a way to pair certain facets of d copies of Pt. When t < 0, these facets are

precisely the timelike facets of the AdS polytope. The resulting space is homeomorphic

to N × [0, 1], and its two boundary components contain all the ridges of the copies of Pt
with non-constant dihedral angle. The final step is to double this manifold, thus obtaining

X = N × S1 with a structure of hyperbolic, or AdS, cone-manifold. The singular locus Σ

consists of the union of the copies of the ridges with non-constant dihedral angle.

We would like to stress here a particular caveat of this construction. The fact that

the polytope Pt, suitably rescaled, converges when t → 0 to a half-pipe polytope is not

sufficient to produce a half-pipe orbifold structure on the rescaled limit of P×t . Indeed, in

contrast with the hyperbolic or AdS case, a hyperplane in half-pipe space does not uniquely

determine a half-pipe reflection: there is a one-parameter family of reflections which fix

a non-spacelike (i.e. degenerate) hyperplane. This counterintuitive phenomenon, which

often occurs in the realm of real projective geometry, highlights the fact that half-pipe

geometry is neither Riemannian, nor pseudo-Riemannian. Hence finding the “half-pipe

glueings” is somehow subtler, and is achieved by analysing the behaviour of the holonomy

representations of the hyperbolic and AdS structures infinitesimally, near the collapse.
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7.2 Transition on character varieties

As discussed in Section 7.1 above, a key ingredient of the four-dimensional geometric

transition in Theorem 7.1.1 is the Kerckhoff-Storm path of hyperbolic 4-polytopes which

collapse as t→ 0 to a 3-dimensional ideal right-angled cuboctahedron. This induces a path

of incomplete hyperbolic structures on a naturally associated 4-orbifold O. The orbifold

fundamental group of O is a rank-22 right-angled Coxeter group Γ22, which embeds in

Isom(H4) as a discrete reflection group when t = 1.

The holonomy representations of these hyperbolic structures on O then provide a

smooth path t 7→ [ρGt ] in the character variety X(Γ22, G) for G = Isom(H4). (This path

was originally defined in [KS10] when G = Isom(H4) only for t ∈ (0, 1], and is easily

continued analytically also for non-positive times. ) Let, more generally, G be Isom(H4),

Isom(AdS4), or the group GHP4 of transformations of half-pipe geometry, and let G+ < G

be the subgroup of orientation-preserving transformations. Recall that Hom(Γ22, G) is

naturally a real algebraic affine set [Wei64]. We then call character variety of Γ22 the

(topological) quotient

X(Γ22, G) = Hom(Γ22, G)/G+

by the action of G+ by conjugation. When G is reductive, that is in the hyperbolic and

AdS settings, it is also possible to define the GIT quotient, which has a structure of real

semialgebraic set by general results [RS90].

The Anti-de Sitter path of polytopes introduced in [RS22b], is an Anti-de Sitter par-

allel of the one introduced by Kerckhoff and Storm in the following sense: it has the same

combinatorics of the hyperbolic polytope Pt for t ∈ (0, ε), such that the same orthogonal-

ity conditions between the bounding hyperplanes are satisfied, and again collapsing to an

ideal right-angled cuboctahedron in a spacelike hyperplane H3 of AdS4. Some bounding

hyperplanes are spacelike, and some others are timelike. This induces a path of Anti-de

Sitter orbifold structures on O, with holonomy representation ρAdS4
t : Γ22 → Isom(AdS4)

given by sending each generator to the corresponding AdS reflection. This path of rep-

resentations is defined for t ∈ (−1, 1) and diverges as |t| → 1−. Theorem 7.1.1 shows

that the two paths, suitably rescaled, can be joined so as to give geometric transition on

the orbifold O, and in particular there is a transitional half-pipe orbifold structure on O
joining the two paths. For G = GHP4 there is a “trivial” path of non-equivalent half-pipe

representations (defined for t ∈ R, and diverging as |t| → +∞) differing from one an-

other by “stretching” in the ambient real projective space. Indeed, a half-pipe structure

is never rigid, because one can always conjugate with a transformation which “stretches”

the degenerate direction, and obtain a new structure equivalent to the initial one as a real

projective structure, but inequivalent as a half-pipe structure.

The representations obtained at t = 0 correspond geometrically to a “collapse” and

play a special role in two ways. First, they correspond to a “symmetry” in the character

varieties, since the representations ρGt and ρG−t are conjugated in G but not in G+. Second,
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interpreting Isom(H4), Isom(AdS4) and GHP4 as subgroups of PGL(5,R), the three repre-

sentations ρG0 coincide. They correspond to a representation (we omit the superscript G

here)

ρ0 : Γ22 → Stab(H3) < G ,

for a fixed copy of H3 in H4, AdS4, or HP4, respectively. Projecting the image of ρ0 in

Stab(H3) ∼= Isom(H3)×Z/2Z to Isom(H3) gives the reflection group of an ideal right-angled

cuboctahedron.

The goal of the paper [RS22a] was to describe the hyperbolic, Anti-de Sitter, and half-

pipe character varieties of the right-angled Coxeter group Γ22, including a study of the

behaviour at the collapse. Let us now summarize these results.

Theorem 7.2.1. Let G be Isom(H4), Isom(AdS4), or GHP4. A neighbourhood U of [ρ0] in

X(Γ22, G) consists of two smooth, transverse, components V and H satisfying V ∩ H =

{[ρ0]}:

• the curve V of the conjugacy classes of all the holonomy representations ρGt ;

• a 12-dimensional ball H, identified to a neighbourhood of the complete hyperbolic

orbifold structure of the ideal right-angled cuboctahedron in its deformation space.

The group G/G+ ∼= Z/2Z acts on U fixing H point-wise and sending [ρGt ] to [ρG−t].

Let us include some comments to elucidate the content of Theorem 7.2.1. First, our

proofs actually show that the representation ρ0 has a neighbourhood in Hom(Γ22, G) that

is homeomorphic to (H ∪ V) × G+, in such a way that the action of G+ corresponds to

obvious left multiplication by G+ on the second factor.

Let Ũ , Ṽ and H̃ be the preimages in Hom(Γ22, G) of U , V and H, respectively. By

“smoothness” of the “components” V and H of U we actually refer to Ṽ, H̃ and Ũ , respec-

tively. In particular, Ṽ and H̃ are smooth manifolds (of dimension 11 and 22, respectively).

The smoothness of Ṽ and H̃ together with the local product structure in a neighbourhood

of ρ0 induce a smooth structure on the components H and V in the quotient.

The “transversality” of V and H is defined as follows: Ṽ ∩ H̃ is the G-orbit of ρ0, and

the Zariski tangent spaces of Ṽ and H̃ intersect transversely in the Zariski tangent space

of Hom(Γ22, G) at ρ0 (and hence at any other point of its orbit). In particular, every

infinitesimal deformation tangent to both Ṽ and H̃ is tangent to the G+-orbit of ρ0.

Our analysis showed that, when G is Isom(H4) or Isom(AdS4), the character variety

X(Γ22, G) is homeomorphic to the GIT quotient Hom(Γ22, G)//G+ near each [ρt]. In other

words, X(Γ22, G) is Hausdorff near [ρt]. Moreover, the natural smooth structure of each

component is coherent with the real semialgebraic structure of the GIT quotient.

While the smoothness of the Isom(H4)-character variety for t > 0 was proved in [KS10],

the smoothness on the Anti-de Sitter and half-pipe sides is completely new. In the half-pipe

picture, we also discover, a posteriori, that the “stretching” deformations mentioned above
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are the only possible deformations of the half-pipe orbifold structure found in [RS22b],

which is therefore essentially unique. The presence of many commutation relations forces

the rigidity of the half-pipe structures.

Together with the hyperbolic and Anti-de Sitter picture, this shows that“nearby”there

is no collapsing path of hyperbolic or Anti-de Sitter orbifold structures other than the ones

we found (up to reparameterisation). This should be compared with some 3-dimensional

examples found by Danciger [Dan13, Section 6], where the transitional HP structure de-

forms non-trivially to nearby half-pipe structures that regenerate to non-equivalent AdS

structures, despite not regenerating to hyperbolic structures.

All in all, Theorem 7.2.1 exhibits a strong lack of flexibility around this example and

suggests that this could be more generally due to dimension issues, confirming the usual

feeling that “the rigidity increases with the dimension”.

7.3 Transition on deformation spaces

In the work in preparation [EMST] with Christian El Emam, Filippo Mazzoli and Andrea

Tamburelli, we study the effect of Danciger’s geometric transition on the deformation

spaces. Roughtly speaking, we show that geometric transition from hyperbolic to Anti-de

Sitter geometry induces a continuous deformation from Donaldson’s hyperKähler structure

to the para-hyperKähler structure of [MST23a] (described in Section 5.5), going through

a degenerate hyperKähler structure on the deformation space of half-pipe manifolds.

More concretely, we produce a path of symmetric tensors gt and paths It, Jt,Kt of

smooth sections of the endomorphism bundle, each defined on a space of “solutions of an t-

Gauss-Codazzi equation”, which correspond to the Gauss-Codazzi equations in hyperbolic

space when t = 1, in Anti-de Sitter space when t = −1, and in half-pipe space when

t = 0. The symmetric tensors gt are Riemannian metrics for t > 0, of neutral signature for

t < 0, and degenerate for t = 0, and the paths It, Jt,Kt satisfy I2 = −1 and J2 = K2 =

−t, in such a way that (g1, I1, J1,K1) coincides with Donaldson’s hyperKähler structure,

and (g−1, I−1, J−1,K−1) coincides with the para-hyperKäher structure of [MST23a]. This

construction is obtained by identifying deformation spaces to subsets of the cotangent

bundle of Teichmüller space via minimal or maximal surfaces, and their analogues in half-

pipe geometry, which have been introduced in [FS19, BF20]. At t = 0, (g0, I0, J0,K0)

has a transparent interpretation in terms of half-pipe manifolds: for instance I0 will again

coincide with the complex structure of the cotangent bundle of Teichmüller space, while

J0 and K0, namely the endomorphisms whose square vanishes, arise from an algebraic

construction on the representation variety in the spirit of [Dan13].



Chapter 8

Equiaffine manifolds

The results of this chapter place in the context of affine differential geometry [NS94,

LSZH15], which is the study of convex (hyper)surfaces in affine space Rn by means of

geometric notions that are invariant by the group of affine transformations of Rn preserving

the volume (called also equiaffine transformations). We will mostly focus on a class of

surfaces in R3 called of constant affine Gaussian curvature. The results presented, which

have been obtained in collaboration with Xin Nie, develop two different directions: the

first is the study of such surfaces invariant under the action of discrete groups of equiaffine

transformations (Section 8.2, [NS23a]), while the second aims to a classification result in

a universal setting, without any group action (Section 8.3, [NS22]).

8.1 Affine spheres and affine Gaussian curvature

The crucial fact in order to develop the theory of affine differential geometry is the existence

of a canonical transverse vector field to any convex (hyper)surface, called affine normal,

which can be used to develop differential geometric invariants, such as the (affine) shape

operator.

The main object of study of this chapter will be surfaces of constant affine Gaus-

sian curvature, namely such that the determinant of their shape operator is a (positive)

constant, whose study has been started in [LSC97, LSZ00, WZ11]. Although they are

well-defined objects in any dimensions, we will restrict here to surfaces of constant affine

Gaussian curvature in affine three-space R3. These can be considered at the same time

as a generalization of affine spheres and of surfaces of constant Gaussian curvature in

Minkowski space R2,1.

On the one hand, surfaces of constant Gaussian curvature in R2,1 were largely discussed

in Chapter 6, and Theorem 6.2.1 shows that they are in 1-to-1 correspondence with regular

domains in R2,1 which are not the future of a spacelike line. On the other hand, let us

briefly recall the theory of affine spheres. These are convex surfaces (or more in general,

convex hypersurfaces in Rn) such that their affine shape operator is a multiple of the
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identity. Equivalently, their affine normals all meet at a single point, and if this point lies

on the concave side of the hypersurface, then the affine sphere is called hyperbolic.

Now, a convex domain is said to be proper if it does not contain any entire straight

line. Cheng and Yau [CY77] provided a classification theorem for hyperbolic affine spheres,

by showing that in every proper convex cone C ⊂ Rn+1 there exists a unique complete

hyperbolic affine sphere ΣC asymptotic to the boundary ∂C with affine shape operator

the identity. Conversely, every properly embedded affine sphere is asymptotic to such a

proper convex cone. See also [Lof10].

From the analytic viewpoint, the result of Cheng and Yau amounts to solving the

Dirichlet problem of Monge-Ampère equationdet D2w = (−w)−n−2 in Ω,

w|∂Ω = 0,
(8.1)

on any bounded convex domain Ω ⊂ Rn, which is the dual of P(C). Now, given a proper

convex cone C, we define a C-regular domain in the same way as regular domains in Rn,1

mentioned earlier, namely as the intersection of at least two half-spaces bounded by affine

hyperplanes which are C-lightlike, meaning that they are parallel to linear hyperplanes

that contain a half-line in ∂C. The role of the future light cone C0 ⊂ Rn,1 is then replaced

by C.

In this context, the problem of finding a surface of constant affine Gaussian curvature

asymptotic to the boundary of the C-regular domain is governed by a lower semicontinuous

function φ : ∂Ω→ R ∪ {+∞} is equivalent to the following Monge-Ampère equation:det D2u = ck(−wΩ)−n−2 in Ω,

u|∂Ω = φ,
(8.2)

where wΩ is the Cheng-Yau solution of the affine sphere problem 8.1, with the additional

important condition that |∇u(x)| → +∞ as x ∈ U tends to ∂U , which ensures that

the corresponding surface is properly embedded (or Euclidean complete, in the classical

terminology of affine differential geometry). For this reason, this problem is sometimes

called a two-step Monge-Ampère problem ([LSC97]).

Observe that, if φ = 0, then u = wΩ is itself the solution to (8.2), which geometrically

corresponds to the fact that C itself is trivially a C-regular domain, and an affine sphere is

itself a surface of constant affine Gaussian curvature asymptotic to C. More remarkably, a

spacelike surface in Minkowski space R2,1 has constant Gaussian curvature in the sense of

Minkowski geometry if and only if its Minkowski normal coincides with the affine normal,

and therefore this particular class also has constant affine Gaussian curvature. For this

reason, constant affine Gaussian curvature is the right condition to generalize both K-

surfaces in Minkowski space and affine spheres.
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8.2 Affine deformations of quasi-divisible cones

Let us now present the results of [NS23a], in the context of group actions. From the

viewpoint of higher Teichmüller theory, given a Fuchsian representation ρ : π1(S) →
SO0(2, 1) = Isom+(H2) where S is a closed hyperbolic surface, one can consider the inclu-

sion of ρ into a larger Lie group G, for example:

• the isometry group SO(2, 1)nR2,1 of the Minkowski space R2,1, where the deforma-

tions give rise to maximal globally hyperbolic flat spacetimes, introduced by [Mes07]

(see also [BG01, Bar05, Bon05, KS07, BB09]);

• the special linear group SL(3,R), where the deformations yield convex real projective

structures (see for example [Gol90, Ben08, KP14, CLM18]).

It is in the former case that surfaces of constant Gaussian curvatures occur to produce

foliations of regular domains in R2,1, while the latter case has been largely studied via the

theory of affine spheres. It is therefore natural to study representations in SL(3,R)nR2,1

via surfaces of constant affine Gaussian curvature, as a generalization of both the above

situations. Moreover, the results of [NS23a] also extend to the setting of punctured surfaces

S.

Let us introduce the necessary definitions. Given a proper convex cone C in R3, we let

Aut(C) < SL(3,R) denote the group of special linear transformations preserving C, which

is also the group of orientation-preserving projective automorphisms of the convex domain

P(C) ⊂ RP2. The projectivised cone P(C) is said to be divisible (resp. quasi-divisible) by

a group Γ < SL(3,R) if Γ is discrete, contained in Aut(C), and the quotient P(C)/Γ

is compact (resp. has finite volume with respect to the Hilbert metric). Furthermore, we

always assume Γ is torsion-free, so that the quotient is a closed (resp. finite-volume) convex

projective surface. Abusing the terminology, we also say that C is (quasi-)divisible by Γ if

P(C) is.

Given a map τ : Γ→ R3, a subgroup in SL(3,R) nR3 of the form

Γτ :=
{

(A, τ(A)) ∈ SL(3,R) nR3
∣∣A ∈ Γ

}
is called an affine deformation of Γ. The group relation forces τ to be an element in the

space Z1(Γ,R3) of cocycles. We call τ admissible if for every A ∈ Γ given by a peripheral

loop of the surface (such an A is parabolic), τ(A) is contained in the 2-dimensional subspace

of R3 preserved by A.

Probably the most important result of [NS23a] is the following.

Theorem 8.2.1. Let C ⊂ R3 be a proper convex cone quasi-divisible by a torsion-free group

Γ < SL(3,R), τ ∈ Z1(Γ,R3) be an admissible cocycle and D be a C-regular domain

preserved by Γτ . Then for any k > 0, D contains a unique Euclidean complete affine
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(C, k)-surface Σk asymptotic to ∂D, which is preserved by Γτ . Moreover, (Σk)k>0 is a

foliation of D, and the function K : D → R given by K|Σk = log k is convex.

We moreover provided a more precise description of the action of Γτ . Indeed, we

showed that:

1. There exists a C-regular domain in R3 preserved by Γτ if and only if τ is admissible.

In this case, there is a unique continuous map f from ∂P(C) to the space of C-null

planes in R3 which is equivariant in the sense that f(A.x) = (A, τ(A)).f(x) for all

x ∈ ∂P(C) and A ∈ Γ. The complement of the union of planes
⋃
x∈∂P(C) f(x) in R3

has two connected components D+ and D−, which are C-regular and (−C)-regular

domains preserved by Γτ , respectively.

2. If C is divisible by Γ, then D+ is the unique C-regular domain preserved by Γτ .

Otherwise, assume the surface S := P(C)/Γ has n ≥ 1 punctures and τ is admissible,

then all the C-regular domains preserved by Γτ form a family (Dµ) parameterized

by µ ∈ Rn≥0, such that D(0,··· ,0) = D+ and we have Dµ ⊂ Dµ′ if and only if µ is

coordinate-wise larger than or equal to µ′.

3. Γτ acts freely and properly discontinuously on every C-regular domain preserved by

it, with quotient homeomorphic to S × R.

When C is the future light cone C0 ⊂ R2,1, the divisible case of this theorem is part

of the seminal work of Mess [Mes07]. Brunswic [Bru16, Bru21] has obtained results in the

quasi-divisible case for C0 as well. For general C, in the divisible case, the equivariant

continuous map given in the first item is related to the Anosov property of Γτ , studied by

Barbot [Bar10] and Danciger-Guéritaud-Kassel [DGK18] in different but related settings.

When S is closed (i.e. C is divisible by Γ), some of the above statements are contained

in the works of Barbot-Béguin-Zeghib [BBZ11] for C0 and Labourie [Lab07, §8] for general

C. We remark moreover that the class of representations ρ : π1(S)→ SL(3,R) n R3 con-

sidered here is extremely rich. Indeed, by Marquis [Mar12], when the orientable surface

S = P(C)/Γ is homeomorphic to either a surface Sg,n of negative Euler characteristic with

genus g and n punctures (which excludes the case of the torus, which is very simple),

the deformation space Pg,n of finite-volume convex projective structures on Sg,n is home-

omorphic to a ball of dimension 16g − 16 + 6n (see [Mar10] and [BH13]). Moreover, if

P̂g,n is the deformation space of representations ρ : π1(Sg,n) → SL(3,R) n R3 such that

the SL(3,R)-component of ρ defines a finite-volume convex projective structure and the

R3-component is given by an admissible cocycle, then (assuming 2− 2g − n < 0), P̂g,n is

a topological vector bundle over Pg,n of rank 6g − 6 + 2n.
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8.3 Regular domains in the universal setting

In the article [NS22], we studied the problem of existence of surfaces of constant affine

gaussian curvature in C-regular domains, without any assumption of group invariance.

The result, however, requires a technical assumption, as follows. Given a convex planar

domain Ω, we say that Ω satisfies the exterior circle condition if for every x0 ∈ ∂Ω there

is a round disk B ⊂ R2 containing Ω such that x0 ∈ ∂B.

Theorem 8.3.1. Let C ⊂ R3 be a proper convex cone such that the projectivized dual cone

P(C∗) ⊂ RP∗2 satisfies the exterior circle condition. Let D ⊂ R3 be a proper C-regular

domain. Then for every k > 0 there exists a unique complete affine (C, k)-surface Σk ⊂ D
which is asymptotic to ∂D.

Moreover, similarly to the cocompact case, we showed that the family of surfaces

(Σk)k>0 from Theorem 8.3.1 is a foliation of D and the function K : D → R defined by

K|Σk = log k is convex.

From the analytic viewpoint, given a bounded convex domain Ω ⊂ R2 satisfying the

exterior circle condition and φ : ∂Ω → R ∪ {+∞} a lower semicontinuous function that

is finite on at least three points, Theorem 8.3.1 asserts the existence of a unique lower

semicontinuous convex function u : Ω→ R ∪ {+∞} which is smooth in the interior of its

domain {u < +∞}, satisfies (8.2), and moreover has the gradient blowup property, namely

the condition that its gradient diverges as one approaches ∂Ω. Moreover, {u < +∞}
coincides with the convex hull of {φ < +∞} in R2. Theorem 8.3.1 largely improves in

terms of regularity assumptions, but in dimension 3, the results of Li, Simon and Chen in

[LSC97], where they proved unique solvability in any dimension when ∂Ω and φ are both

smooth.

In a later article [NS23b] we achieved a partial generalization of these results, partly

also in higher dimensions, for a more general class of two-step Monge-Ampère equations,

which correspond geometrically to the class of surfaces of constant Gaussian curvature

(or, in higher dimensions, constant Gaussian curvature), but with respect to the so-called

Li-normalization (introduced and studied in [Xu08, XLL09, WZ11, XY11]) instead of the

classical affine normal vector field.

Let us conclude by discussing the role of the exterior circle condition in Theorem 8.3.1

This is a technical condition, that ensures that the right-hand side of the first equation

in (8.2) goes to +∞ fast enough near ∂Ω, which in turn ensures of u, namely the last

condition in (8.2). Although this might seem a technical assumption, we produced a

counterexample to Theorem 8.3.1 without the exterior circle condition assumption. Given

a bounded convex domain Ω ⊂ R2, and ∆ ⊂ Ω an open triangle with vertices on ∂Ω, let φ

be the function on ∂Ω vanishing at the vertices of ∆ with φ = +∞ everywhere else. We

showed that:
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1. If Ω satisfies the exterior circle condition at every vertex of ∆, then there exists a

unique u satisfying (8.2) and the gradient blowup property.

2. If ∂Ω contains an open line segment meeting ∂∆ exactly at a vertex, then any u

satisfying (8.2) does not fulfill the gradient blowup property.

In other words, in the situation of the second item, the corresponding C-regular domain

does not admit any Euclidean complete surface of constant affine Gaussian curvature. This

is achieved by showing that the gradient of u does not blowup at the vertex of ∆ on the

line segment because the right-hand side of the Equation (8.2), which in turn is obtained

as a solution to Equation 8.1, does not go to +∞ fast enough near the segment.

We emphasize that Theorems 8.2.1 and 8.3.1 are transverse to each other, in the sense

that none of the two results is covered by the other. To elaborate this, clearly Theorem

8.3.1 does not involve any group action, hence it might appear as more general than

Theorems 8.2.1, However, when Ω is a quasi-divisible projectivised cone, then ∂P(C) is

known to have at most C1,α-regularity [Ben04, Gui05], and this implies that the dual

domain ∂P(C∗) does not satisfy the exterior circle condition. However, in that setting

the exterior circle condition is replaced by the fact that the quotient of ∂P(C) by Γτ is

compact when one takes away a neighbourhood of every puncture, and that the domain

Ω still has enough regularity at the fixed points of the action of peripheral loops in π1(S)

on ∂Ω corresponding to any puncture of S.
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– Mathématiques, 9:581–600, 2022.

[EGM09] José M. Espinar, José A. Gálvez, and Pablo Mira. Hypersurfaces in Hn+1 and

conformally invariant equations: the generalized Christoffel and Nirenberg

problems. J. Eur. Math. Soc. (JEMS), 11(4):903–939, 2009.

[EMP20] Alexandre Eremenko, Gabriele Mondello, and Dmitri Panov. Moduli of spher-

ical tori with one conical point. Preprint arXiv:2008.02772, 2020.

[EMST] Christian El Emam, Filippo Mazzoli, Andrea Seppi, and Andrea Tamburelli.

Transitions of (para-)hyperKähler structures between almost-Fuchsian and

GHMC AdS deformation spaces. In preparation.

[Eps84] Charles Epstein. Envelopes of horospheres and Weingarten surfaces in hy-

perbolic 3-space. 1984. unpublished manuscript.

[Eps86] Charles L. Epstein. The hyperbolic Gauss map and quasiconformal reflec-

tions. J. Reine Angew. Math., 372:96–135, 1986.

[Eps87] Charles L. Epstein. The asymptotic boundary of a surface imbedded in H3



108 Bibliography

with nonnegative curvature. Mich. Math. J., 34:227–239, 1987.

[FS19] François Fillastre and Andrea Seppi. Spherical, hyperbolic and other pro-

jective geometries: convexity, duality, transitions. In Eighteen essays on

non-Euclidean geometry (V. Albenge and A. Papadopoulos ed.). European

Mathematical Society Publishing House, 2019.

[FS20] François Fillastre and Andrea Seppi. Generalization of a formula of Wolpert

for balanced geodesic graphs on closed hyperbolic surfaces. Annales Henri

Lebesgue, 3:873–899, 2020.

[FS21] François Fillastre and Andrea Seppi. A remark on one-harmonic maps from

a Hadamard surface of pinched negative curvature to the hyperbolic plane.

Josai Mathematical Monographs, 13:163–171, 2021.

[Geo12] Nikos Georgiou. On area stationary surfaces in the space of oriented geodesics

of hyperbolic 3-space. Math. Scand., 111(2):187–209, 2012.

[Ger70] Robert Geroch. Domain of dependence. J. Mathematical Phys., 11:437–449,

1970.

[Ger83a] Claus Gerhardt. H-surfaces in Lorentzian manifolds. Commun. Math. Phys.,

89:523–553, 1983.

[Ger83b] Claus Gerhardt. H-surfaces in Lorentzian manifolds. Comm. Math. Phys.,

89(4):523–553, 1983.

[Ger06a] Claus Gerhardt. Curvature problems, volume 39 of Series in Geometry and

Topology. International Press, Somerville, MA, 2006.

[Ger06b] Claus Gerhardt. On the CMC foliation of future ends of a spacetime. Pac.

J. Math., 226(2):297–308, 2006.

[GG10a] Nikos Georgiou and Brendan Guilfoyle. A characterization of Weingarten

surfaces in hyperbolic 3-space. Abh. Math. Semin. Univ. Hamb., 80(2):233–

253, 2010.

[GG10b] Nikos Georgiou and Brendan Guilfoyle. On the space of oriented geodesics

of hyperbolic 3-space. Rocky Mt. J. Math., 40(4):1183–1219, 2010.

[GG14] Nikos Georgiou and Brendan Guilfoyle. Marginally trapped surfaces in spaces

of oriented geodesics. J. Geom. Phys., 82:1–12, 2014.
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